• Title/Summary/Keyword: drag

Search Result 2,266, Processing Time 0.033 seconds

Experimental Study on Aerodynamic Drag Characteristics by Train Bogie Shape Variation (차세대 고속열차 대차 형상에 따른 공기저항 변화에 대한 실험적 연구)

  • Kwak, Min-Ho;Lee, Yeong-Bin;Lee, Jung-Uk;Kim, Kyu-Hong;Lee, Dong-Ho;Chung, Hyoung-Seog;Jang, Young-Il;Kwon, Hyeok-Bin
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.14-19
    • /
    • 2011
  • Wind tunnel tests are performed so as to investigate the aerodynamic drag characteristics of HEMU-400x, next generation Korean high speed train. The experiments of 1/20 scaled 5-car train model are done at 30, 40, 50, 60m/s with a normal bogie, a bogie cover, and a streamlined shape. The flat plate with knife edge are installed to minimize the effect of boundary layer of wind tunnel for the train model. The aerodynamic drag reduction was more by a streamlined shape than by a bogie cover from a normal bogie. Based on the experimental results, the aerodynamic drag of HEMU-400x test train(6-car) was predicted. It is prediceted that More bogie cover could reduce more aerodynamic drag of the test train in replacement of normal bogies.

  • PDF

Application of Anti-Drag System in the Passenger Door (객실 출입문의 Anti-Drag 시스템 적용)

  • Jung, Hwa-Sic;Park, Kyeong-Bong;Park, Jae-Hong
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1348-1356
    • /
    • 2011
  • The passenger side entrance door is very important system that make boarding and getting off the passengers. During the passenger door closing, there is some obstacles between door panels, passenger door can detect the obstacle and obstacle is remained between door panels, vehicle can no possible to move. But passenger door can not detect the obstacle if obstacle is too thin such as clothes and belts. So, anti-drag system is applied the to make detect these thin obstacle. Therefore, we survey the characteristic, function and its activation scenario of anti-drag system and present the passenger door system that latest applied anti-drag system that can be a help to make design.

  • PDF

Effect of Divergent Trailing Edge Modification of Supercritical Airfoil in Transonic Flow (천음속유동에서 초임계익형 후연확대수정의 영향)

  • Yoo, Neung-Soo
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.183-189
    • /
    • 1997
  • The computation of the flow around a supercritical airfoil with a divergent trailing edge(DTE) modification(DLBA 243) is compared to that of original supercritical airfoil(DLBA 186). For this computation, Reynolds-Averaged Navier-Stokes equations are solved with a linearized block implicit ADI method and a mixing length turbulence model. Results show the effects of the shock and separated flow regions on drag reduction due to DTE modification. Results also show that DTE modification accelerates the boundary layer flow near the trailing edges which has an effect similar to a chordwise extension that increases circulation and is consistent with the calculated increase in the recirculation region in the wake. Airfoil with DTE modification achieves the same lift coefficient at a lower incidence and thus at a lower drag coefficient, so that lift-to-drag ratio is increased in transonic cruise conditions compared to the original airfoil. The reduction in drag due to DTE modification is associated with weakening of shock strength and delay of shock which is greater than the increase in base drag.

  • PDF

Reference Trajectory Design for Atmosphere Re-entry of Transportation Mechanical Structure (수송기계구조물의 대기권 재진입 기준궤도 설계)

  • Park, J.H.;Eom, W.S.
    • Journal of Power System Engineering
    • /
    • v.7 no.4
    • /
    • pp.67-73
    • /
    • 2003
  • The entry guidance design involves trajectory optimization and generation of a drag acceleration profile as the satisfaction of trajectory conditions during the entry flight. The reference trajectory is parameterized and optimized as piecewise linear functions of the velocity. A regularization technique is employed to achieve desired properties of the optimal drag profile. The regularized problem has smoothness properties and the minimization of performance index then prevents the drag acceleration from varying too fast, thus eliminating discontinuities. This paper shows the trajectory control using the simple control law as well as the information of reference drag acceleration.

  • PDF

Drag Reduction of Cylinder with Dimpled Surface (표면에 딤블이 있는 원주의 항력감소)

  • 노기덕
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.155-161
    • /
    • 2001
  • Fundamental studies on the drag reduction of the circular cylinder having dimple were conducted by the measurement of the fluid force acting on the cylinder and by the flow visualization around the cylinder. The drag coefficients were changed by the shape and the geometrical arrangement of the dimple. The drag of the cylinder was reduced about 25% by the proper arrangement of the dimple. The flow field around the cylinder having dimple, which was the minimum drag, was visualized by the hydrogen bubble technique. In this case, the separation points were moved rearward and the wake region was small in comparison with that of the cylinder having no dimple.

  • PDF

An Experimental Study of Aerodynamic Drag on High-speed Train

  • Kwon, Hyeok-bin;Lee, Dong-ho-;Baek, Je-hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.11
    • /
    • pp.1267-1275
    • /
    • 2000
  • A series do wind tunnel tests were conducted for Korean high-speed train model with various shape components to assess the contributions to aerodynamic drag. In order to elucidate the ground effects, two different wind tunnels, one with a moving ground system and the other with a fixed ground, were used for the same model and the results of both were compared and analyzed in detail. The result show that a suitable ground simulation is necessary for the test of a train model with many cars and detailed underbody. But the relative difference of the drag coefficients for the modifications of shape components can be measured by a fixed ground test with high accuracy and low cost. The effects of the nose shape, the inter-cargap and the bogie-fairing on total drag were discussed and some ideas were prosed to decrease the aerodynamic resistance of high speed train.

  • PDF

Recent Advances in DNA Sequencing by End-labeled Free-Solution Electrophoresis (ELFSE)

  • Won, Jong-In
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.3
    • /
    • pp.179-186
    • /
    • 2006
  • End-Labeled Free-Solution Electrophoresis (ELFSE) is a new technique that is a promising bioconjugate method for DNA sequencing (or separation) and genotyping by both capillary and microfluidic device electrophoresis. Because ELFSE enables high-resolution electrophoretic separation in aqueous buffer alone (i.e., without a polymer matrix), it eliminates the need to load viscous polymer networks into electrophoresis microchannels. To achieve microchannel DNA separations with high performance, ELFSE requires monodisperse perturbing entities (i.e., drag-tags), which create a large amount of frictional drag when pulled behind DNA during free-solution electrophoresis, and which have other properties suitable for microchannel electrophoresis. In this article, the theoretical concepts of ELFSE and the required characteristics of the drag-tag molecules for the ultimate performance of ELFSE are reviewed. Additionally, the merits and limitations of current drag-tags are also discussed in the context of recent experimental data of ELFSE separation (or sequencing).

Active Controls of Flow Over a Sphere for Drag Reduction (능동제어를 이용한 구의 저항 감소)

  • Jeon, Seung;Choi, Hae-Cheon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.199-202
    • /
    • 2006
  • The objective of this study is to propose methods of controlling the wake behind a sphere for drag reduction using the suboptimal control theory and surrogate management framework, respectively. The Reynolds numbers considered is 300 at which the base flow is unsteady planar symmetric. Given the cost function defined as the square of the difference between the target pressure (potential-flow pressure) and real flow pressure on the sphere surface, the suboptimal control makes the flow steady axisymmetric and produces drag reduction. Based on the actuation profile from the suboptimal control, the optimal wavy actuation profile is obtained using the surrogate management framework and produces drag reduction.

  • PDF

An Experimental Study on the Pumping Performance of the Two-Stage Disk-Type Drag Pump (2단 원판형 드래그펌프의 배기 성능에 관한 실험적 연구)

  • Hwang, Young-Kyu;Heo, Joong-Sik;Kwon, Myoung-Keun;Yang, Seong-Min
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.347-352
    • /
    • 2001
  • In this paper, the pumping performance of the two-stage disk-type drag pump which works in the outlet pressure range from 3 to 0.001 Torr is studied experimentally. The rotational speed of the pump is 24,000rpm, and nitrogen is used as a test gas. The pumping characteristics of various drag pumps are performed. The inlet pressures are measured for various outlet pressures of the test pump. The maximum compression ratios for zero throughput are 1000(two-stage BSC type), 740(helical-type), 90(BSC type) and 85(OSC type), respectively. The ultimate pressure of the two-stage disk-type drag pump is $8.1\times10^6$ Torr.

  • PDF

Drag reduction of a circular cylinder at subcritical flow regime using base shield plates

  • El-Khairy, Nabil A.H.
    • Wind and Structures
    • /
    • v.6 no.5
    • /
    • pp.347-356
    • /
    • 2003
  • Experimental studies on drag reduction of a circular cylinder of diameter D were conducted in the subcritical flow regime at Reynolds numbers in the range $4{\times}10^4{\leq}Re{\leq}10^5$. To shield the cylinder rear surface from the pressure deficit of the unsteady vortex generation in the near wake, two shield plates were attached downstream of the separation points to form a cavity at the base region. The chord of the shield plates, L, ranged from 0.22 to 1.52 D and the cavity width, G, was in the range from 0 to 0.96 D. It is concluded that significant drag reductions from that of a plain cylinder may be achieved by proper sizing of the shield plates and the base cavity. The study shows that using a pair of shield plates at G/D of 0.86 and angular position ${\theta}$ of ${\pm}121^{\circ}$ results in a configuration with percentage drag reduction of 40% for L/D of 0.5, and 55% for L/D of 1.0.