• Title/Summary/Keyword: draft genome sequencing

Search Result 29, Processing Time 0.022 seconds

Draft genome sequence of Pelagicola sp. DSW4-44 isolated from seawater (해수에서 분리된 Pelagicola sp. DSW4-44의 초안 유전체 서열분석)

  • Oh, Ji-Sung;Roh, Dong-Hyun
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.283-285
    • /
    • 2019
  • The draft genome sequencing for Pelagicola sp. DSW4-44 (= KCTC 62762 = KCCM 43261), isolated from deep seawater of East Sea in Korea, was performed using Illumina HiSeq platform. As a result, the draft genome was comprised of a total length of approximately 4.85 Mbp with G + C content of 54.3%, and included a total of 4,566 protein-coding genes, 3 rRNA genes, 48 tRNA genes, 3 non-coding RNA genes, and 67 pseudo genes. In the draft genome, the strain DSW4-44 contained genes involved in the nitrogen metabolism of dissimilatory nitrate reduction to ammonium (DNRA) and denitrification, which were not found other strains in the genus Pelagicola.

Draft Genome Sequence of Weissella koreensis Strain HJ, a Probiotic Bacterium Isolated from Kimchi

  • Seung-Min Yang;Eiseul Kim;So-Yun Lee;Soyeong Mun;Hae Choon Chang;Hae-Yeong Kim
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.1
    • /
    • pp.128-131
    • /
    • 2023
  • Here we report the draft genome sequence of Weissella koreensis strain HJ and genomic analysis of its key features. The genome consists of 1,427,571 bp with a GC content of 35.5%, and comprises 1,376 coding genes. In silico analysis revealed the absence of pathogenic factors within the genome. The genome harbors several genes that play an important role in the survival of the gastrointestinal tract. In addition, a type III polyketide synthase cluster was identified. Pangenome analysis identified 68 unique genes in W. koreensis strain HJ. The genome information of this strain provides the basis for understanding its probiotic properties.

The strategy and current status of Brassica rapa genome project (배추 유전체 염기서열 해독 전략과 현황)

  • Mun, Jeong-Hwan;Kwon, Soo-Jin;Park, Beom-Seok
    • Journal of Plant Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.153-165
    • /
    • 2010
  • Brassica rapa is considered an ideal candidate to act as a reference species for Brassica genomic studies. Among the three basic Brassica species, B. rapa (AA genome) has the smallest genome (529 Mbp), compared to B. nigra (BB genome, 632 Mbp) and B. oleracea (CC genome, 696 Mbp). There is also a large collection of available cultivars of B. rapa, as well as a broad array of B. rapa genomic resources available. Under international consensus, various genomic studies on B. rapa have been conducted, including the construction of a physical map based on 22.5X genome coverage, end sequencing of 146,000 BACs, sequencing of >150,000 expressed sequence tags, and successful phase 2 shotgun sequencing of 589 euchromatic region-tiling BACs based on comparative positioning with the Arabidopsis genome. These sequenced BACs mapped onto the B. rapa genome provide beginning points for genome sequencing of each chromosome. Applying this strategy, all of the 10 chromosomes of B. rapa have been assigned to the sequencing centers in seven countries, Korea, UK, China, India, Canada, Australia, and Japan. The two longest chromosomes, A3 and A9, have been sequenced except for several gaps, by NAAS in Korea. Meanwhile a China group, including IVF and BGI, performed whole genome sequencing with Illumina system. These Sanger and NGS sequence data will be integrated to assemble a draft sequence of B. rapa. The imminent B. rapa genome sequence offers novel insights into the organization and evolution of the Brassica genome. In parallel, the transfer of knowledge from B. rapa to other Brassica crops would be expected.

Draft genome sequence of Zhongshania marina DSW25-10T isolated from seawater (해수에서 분리된 Zhongshania marina DSW25-10T 의 유전체 서열분석)

  • Oh, Ji-Sung;Roh, Dong-Hyun
    • Korean Journal of Microbiology
    • /
    • v.54 no.4
    • /
    • pp.480-482
    • /
    • 2018
  • The draft genome sequencing for Zhongshania marina $DSW25-10^T$, isolated from deep seawater of East Sea in Korea, was performed using Illumina HiSeq platform. As a result, the draft genome was comprised of a total length of approximately 4.08 Mbp with G + C content of 49.0%, and included a total of 3,702 protein-coding genes, 3 rRNA genes, 39 tRNA genes, 4 non-coding RNA genes, and 36 pseudogenes. In addition, the metabolic pathways of aliphatic and aromatic compounds were identified. In light of these metabolic pathways, Zhongshania marina $DSW25-10^T$ is expected to be a useful bioremediation resource.

Draft Genome Sequence of Latilactobacillus sakei subsp. sakei FBL10, a Putative Probiotic Strain Isolated from Saeujeot (salted fermented shrimp)

  • So-Yun Lee;Dabin Kim;Seung-Min Yang;Eiseul Kim;Hae-Yeong Kim
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.4
    • /
    • pp.526-530
    • /
    • 2023
  • Here, we report the draft genome sequence of Latilactobacillus sakei subsp. sakei FBL10 isolated from Saeujeot (salted fermented shrimp). The draft genome consists of 2,285,672 bp with a G+C content of 41.1% and contains 2,282 coding genes. Genome analysis revealed that clusters associated with bacteriocin production were identified, in addition to several probiotic properties, such as stress resistance factors and aggregation. On the other hand, antibiotic resistance genes and virulence factors were not present. Pangenome analysis for 32 genomes showed 213 unique genes for FBL10 strain. These results demonstrate the beneficial properties of strain FBL10 as a putative probiotic.

Draft genome sequence of Lactobacillus reuteri KLR3004 from a fattening pig (비육돈 분변으로부터 분리한 Lactobacillus reuteri KLR3004 유산균주의 유전체 분석)

  • Park, Jongbin;Lee, Jun-Yeong;Jin, Gwi-Deuk;Kim, Eun Bae
    • Korean Journal of Microbiology
    • /
    • v.53 no.2
    • /
    • pp.146-148
    • /
    • 2017
  • We sequenced the genome of Lactobacillus reuteri KLR3004 strain isolated from a fattening pig in South Korea. The sequences were assembled into a draft genome containing 1,996,237 bp with a G+C content of 38.75% and 1,837 predicted protein-coding sequences in 149 contigs.

Draft Genome Sequence of the White-Rot Fungus Schizophyllum Commune IUM1114-SS01

  • Kim, Da-Woon;Nam, Junhyeok;Nguyen, Ha Thi Kim;Lee, Jiwon;Choi, Yongjun;Choi, Jaehyuk
    • Mycobiology
    • /
    • v.49 no.1
    • /
    • pp.86-88
    • /
    • 2021
  • The monokaryotic strain, Schizophyllum commune strain IUM1114-SS01, was generated from a basidiospore of dikaryotic parental strain IUM1114. It even showed the decolorizing activities for several textile dyes much better than its parental strain. Based on the results of a single-molecule real-time sequencing technology, we present the draft genome of S. commune IUM1114-SS01, comprising 41.1 Mb with GC contents of the genome were 57.44%. Among 13,380 protein-coding genes, 534 genes are carbon hydrate-active enzyme coding genes.

Draft Genome Database Construction from Four Strains (NIES-298, FCY-26, -27, and -28) of the Cyanobacterium Microcystis aeruginosa

  • Rhee, Jae-Sung;Choi, Beom-Soon;Han, Jeonghoon;Hwang, Soon-Jin;Choi, Ik-Young;Lee, Jae-Seong
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.9
    • /
    • pp.1208-1213
    • /
    • 2012
  • Microcystis aeruginosa is a cyanobacterium that can form harmful algal blooms (HABs) producing toxic secondary metabolites. We provide here draft genome information of four strains of this freshwater cyanobacterium that was obtained by the Next Generation Sequencing approach to provide a better understanding of molecular mechanisms at the physiological and ecological levels. After gene assembly, genes of each strain were identified and annotated, and a genome database and G-browser of M. aeruginosa were subsequently constructed. Such genome information resources will enable us to obtain useful information for molecular ecological studies with a better understanding of modulating mechanisms of environmental factors associated with blooming.

Draft genome sequences of Enterococcus faecium JB00008 (KACC 92186P) isolated from Korean fermented soybean paste (Cheonggukjang) (한국 전통유래식품(청국장)에서 분리한 Enterococcus faecium JB00008 (KACC 92186P) 유산균주의 유전체 분석)

  • Park, Jongbin;Jin, Gwi-Deuk;Kim, Eun Bae
    • Korean Journal of Microbiology
    • /
    • v.54 no.2
    • /
    • pp.171-173
    • /
    • 2018
  • Enterococcus faecium was commonly used as a probiotics and feed additives to human and animals because of their beneficial effects. We sequenced the genome of E. faecium JB00008 (KACC 92186P) isolated from a Korean fermented soybean paste (Cheonggukjang) that showed antibacterial activity against Escherichia coli. A 2,847,295-bp draft genome was obtained, and it has in 37.84% G + C content in 34 contigs (length, ${\geq}500bp$).

Draft Genome Sequence of Aeromonas caviae Isolated from a Newborn with Acute Haemorrhagic Gastroenteritis

  • Savita Jadhav;Ujjayni Saha;Kunal Dixit;Anjali Kher;Sourav Sen;Nitin Lingayat;Vivekanand Jadhav;Sunil Saroj
    • Microbiology and Biotechnology Letters
    • /
    • v.51 no.2
    • /
    • pp.217-221
    • /
    • 2023
  • Aeromonas spp., are Gram-negative rods that can cause infections in healthy and immunocompromised hosts. The clinical presentation of gastroenteritis varies from mild diarrhoea to shigella-like dysentery to severe cholera-like watery diarrhoea. Here, we report a case of acute hemorrhagic gastroenteritis in a newborn infant by Aeromonas caviae and its draft genome sequence. It is important to reduce the chance of incorrect isolate identification, which could lead to the exclusion of pathogenic Aeromonas spp., from routine laboratory identification in cases of diarrheal diseases. The genome sequence of A. caviae SVJ23 represents a significant step forward in understanding the diversity and pathogenesis, virulence, and antimicrobial resistance profile.