• Title/Summary/Keyword: downstream velocity ratio

검색결과 94건 처리시간 0.021초

개량형 공압식 가동보의 잠김흐름 특성 분석을 위한 실험연구 (Analysis of submerged flow characteristics of the improved-pneumatic-movable weir through the laboratory experiments)

  • 이경수;장창래;이남주
    • 한국수자원학회논문집
    • /
    • 제49권7호
    • /
    • pp.615-623
    • /
    • 2016
  • 본 연구에서는 개량형 공압식 가동보를 대상으로 가동보의 기립 각도변화에 따른 잠김흐름 특성을 분석하고 유량계수를 산정하였다. 실험결과, 위어마루에서 하류수면까지의 높이와 위어마루에서 상류 수면고 높이의 비($h_t/H$)에 대한 유량감소계수($Q_s/Q_1$)의 변화는 ($h_t/H$가 1에 가까울수록 감소하였다. 따라서 보 하류에서의 수심은 상류보다 작지만 보를 통과하는 흐름으로 인해 하류 유속이 빠르게 나타났으며, 유량이 증가할수록 상 하류 수위차는 감소하는 것으로 나타났다. 또한 같은 유량조건인 경우 하류수두는 L/W가 클수록 크게 증가하였다. 개량형 공압식 가동보의 잠김흐름 유량계수는 가동보의 물리적 제원보다는 상류 접근흐름수두와 상 하류 흐름조건에 의하여 결정되었다.

표면 연소기의 연소진동음의 발생조건 (Onset condition of the combustion-driven sound in a surface burner)

  • 권영필;이주원;이동훈
    • 설비공학논문집
    • /
    • 제9권2호
    • /
    • pp.221-228
    • /
    • 1997
  • A strong combustion-driven sound from a surface burner made of a perforated metal fiber plate for premixed gas was investigated to clarify the physical mechanism of its generation. A simple model was developed for the acoustic power generation in terms of the heat transfer response function and the acoustic impedance of the burner. The acoustic impedance of the perforated metal fiber placed on the open exit was measured and the heat release response of the burner to the oscillating flow associated with the acoustic disturbance was expressed in terms of a response function. It was found that the power is generated by the heat release in response to the downstream particle velocity, in contrast to the upstream velocity in the case of the Rijke oscillation driven by a heater placed in the lower half of a columm with upstream flow. The measured frequencies of the oscillation were in agreement with the estimated resonance frequencies and their excitation was varied with the combustion conditions. For the same fuel rate, the excited frequency increases with the air ratio if it is low but decreases with the ratio if not so low. Such frequency characteristics were explained by assuming a heat release response function with a time constant and it was shown that the excited frequency decreases as the time constant increases.

  • PDF

스월이 있는 3차원 모델 연소기 내의 연소특성 (Prediction of Combustion Characteristics in a 3D Model Combustor with Swirling Flow)

  • 김만영
    • 대한기계학회논문집B
    • /
    • 제27권1호
    • /
    • pp.95-104
    • /
    • 2003
  • The objective of this work is to investigate the turbulent reacting flow in a three dimensional combustor with emphasis on thermal NO emission through a numerical simulation. Flow field is analyzed using the SIMPLE method which is known as stable as well as accurate in the combustion modeling, and the finite volume method is adopted in solving the radiative transfer equation. In this work, the thermal characteristics and NO emission in a three dimensional combustor by changing parameters such as equivalence ratio and inlet swirl angle have investigated. As the equivalence ratio increases, which means that more fuel is supplied due to a larger inlet fuel velocity, the flame temperature increases and the location of maximum temperature and thermal NO has moved towards downstream. In the mean while, the existence of inlet swirl velocity makes the fuel and combustion air more completely mixed and burnt in short distance. Therefore, the locations of the maximum reaction rate, temperature and thermal NO were shifted to forward direction compared with the case of no swirl.

Planar-Jet형 연소기 내 난류유동의 LES (Large-Eddy Simulation of Turbulent Flows in a Planar Combustor)

  • 김도형;양경수;신동신
    • 대한기계학회논문집B
    • /
    • 제24권10호
    • /
    • pp.1409-1416
    • /
    • 2000
  • In this study, turbulent flows in a planar combustor which has a square rib-type flame holder are numerically investigated by Large Eddy Simulation(LES). Firstly, the flow fields with or without jet injection downstream of the flame-holder are examined using uniform inlet velocity. Comparison of the present LES results with experimental one shows a good agreement. Secondly, to investigate mixing of oxidizer(air) and fuel injected behind the flame holder, the scalar-transport equation is introduced and solved. From the instantaneous flow and scalar fields, complex and intense mixing phenomena between fuel and jet are observed. It is shown that the ratio of jet to blocked air velocity is an important factor to determine the flow structure. Especially, when the ratio is large enough, the fuel jet penetrates the main vortices shed from the flame holder, resulting in significant changes in the flow and scalar fields.

고해상도 PIV 기법을 이용한 타원형 제트의 근접 유동장 해석 (Flow Analysis on Near Field of Elliptic Jet Using a Single-Frame PIV)

  • 신대식;이상준
    • 대한기계학회논문집B
    • /
    • 제24권3호
    • /
    • pp.459-466
    • /
    • 2000
  • Flow characteristics of turbulent elliptic jets were experimentally investigated using a single-frame PIV system. A sharp-edged elliptic nozzle with aspect ratio(AR) of 2 was tested and the experimental results were compared with those of circular jet having the same equivalent diameter($D_e$). The Reynolds number based on the nozzle exit velocity and nozzle equivalent diameter was about $1{\times}10^4$. The spreading rate along the major and minor axis are different remarkably. The jet half width along the major axis decreases at first and then increases with going downstream. But along the minor axis the jet width increases steadily. The elliptic jet of AR=2 has one switching points at $X/D_e=2$ within the near field. Turbulence properties are also found to be significantly different along the major and minor axis planes.

원자로 부수로내 혼합날개를 지나는 삼차원 열유동 해석 (Numerical Analyses of Three-Dimensinal Thermo-Fluid Flow through Mixing Vane in A Subchannel of Nuclear Reactor)

  • 최상철;김광용
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2002년도 춘계 학술대회논문집
    • /
    • pp.79-87
    • /
    • 2002
  • The present work analyzed the effect of mixing vane shape on the flow structure and heat transfer downstream of mixing vane in a subchannel of fuel assembly, by obtaining velocity and pressure fields, turbulent intensity, flow-mixing factors, heat transfer coefficient and friction factor using three-dimensional RANS analysis. NJl5, NJ25, NJ35, NJ45, which were designed by the authors, were tested to evaluate the performances in enhancing the heat transfer. Standard $\kappa-\epsilon$ model is used as a turbulence closure model, and, periodic and symmetry conditions are set as boundary conditions. The flow blockage ratio is kept constant, but the twist angle of mixing vane is changed. The results with three turbulence models( $\kappa-\epsilon$, $\kappa-\omega$, RSM) were compared with experimental data.

  • PDF

계단형 슬롯출구의 높낮이 변화에 따른 2차원 막냉각 특성 (2-Dimensional Film Cooling Characteristics with the Height Variation of a Stepped Slot Exit)

  • 손창호;김태묵;이근식
    • 대한기계학회논문집B
    • /
    • 제29권1호
    • /
    • pp.46-54
    • /
    • 2005
  • Film cooling characteristics has been examined numerically for the height variation of a stepped slot exit. In this study, the upstream wall height of the stepped slot exit varies from -2d (d = slot width) to 3d, blowing ratio ranges from 0.5 to 3, and injection angles are $15^{\circ},\;30^{\circ},\;and\;45^{\circ}$. The results showed that film cooling performance was mainly subjected to the magnitude of recirculation region near the downstream-side slot exit as well as the magnitude and the distribution region of turbulent kinetic energy due to the local velocity and momentum differences between the coolant and the main flow near the slot exit. The up-1d type slot at higher blowing ratios over 2 and the flat type slot at lower blowing ratios below 1 have the best film cooling performances, in case of the injection angles of $30^{\circ},\;and\;45^{\circ}$, respectively. Compared with the other injection angles, in case of the injection angles of $15^{\circ}$, the best film cooling performances was shown in even a higher upstream wall (up-3d) at higher blowing ratio like 3 by the gradual reduction of the coolant velocity which minimizes the local velocity differences between the coolant and the main flow near the slot exit.

EMP 방호시설의 덕트 및 배관 최적 설계 방안 (Design Optimization for Air Ducts and Fluid Pipes at Electromagnetic Pulse(EMP) Shield in Highly Secured Facilities)

  • 방승기;김재훈
    • 한국지열·수열에너지학회논문집
    • /
    • 제10권4호
    • /
    • pp.15-24
    • /
    • 2014
  • This study conducted a computational fluid dynamics(CFD) analysis to find an appropriate diameter or sectional area of air ducts and fluid pipes which have an electromagnetic pulse(EMP) shied to protect indoor electronic devices in special buildings like military fortifications. The result shows that the optimized outdoor air intake size can be defined with either the ratio of the maximum air velocity in the supply duct to the air intake size, or the shape ratio of indoor supply diffuser to the outdoor air intake. In the case of water channel, the fluid velocity at EMP shield with the identical size of the pipe, decreases by 25% in average due to the resistance of the shield. The enlargement of diameter at the shield, 2 step, improves the fluid flow. It illustrated that the diameter of downstream pipe size is 1step larger than the upstream for providing the design flow rate. The shield increases friction and resistance, in the case of oil pipe, so the average flow velocity at the middle of the shield increase by 50% in average. In consideration of the fluid viscosity, the oil pipe should be enlarged 4 or 5 step from the typical design configuration. Therefore, the fluid channel size for air, water, and oil, should be reconsidered by the engineering approach when EMP shield is placed in the middle of channel.

NREL 5 MW 풍력터빈 모형의 후류 유동장에 대한 실험적 연구 (An Experimental Study on Wake Flow-Field of NREL 5 MW Wind Turbine Model)

  • 강승희;유기완
    • 한국항공우주학회지
    • /
    • 제45권2호
    • /
    • pp.85-91
    • /
    • 2017
  • 본 연구에서는 NREL 5 MW 해상풍력터빈 모형의 후류 유동장 분석을 위해 1/86 축소모형을 사용한 실험적 연구를 수행하였다. 정격출력 속도 11.4 m/s와 회전수 1,045 rpm 조건에서 열선풍속계를 사용하여 반경의 6배까지 후류에서 속도 결핍 및 난류도 변화를 측정하는 풍동시험을 수행하였다. 그 결과 풍력터빈의 후류에서의 속도결핍은 횡방향과 수직 방향으로는 반경의 2배 이내에서 회복됨을 볼 수 있었으며, 끝단 와류에 의한 영향은 반경의 5배 이후에는 나타나지 않음을 볼 수 있었다. 또한, 후류의 난류도는 블레이드 끝단 부근에서 크게 나타나며 길이방향으로 반경 거리까지는 급격한 감소가 일어나지만 이 이후부터 반경의 6배까지 유지되었다.