• Title/Summary/Keyword: downhole seismic survey

Search Result 10, Processing Time 0.033 seconds

SAFETY EVALUATION OF ROCK-FILL DAM

  • HoWoongShon;YoungChulOh;YoungKyuLee
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.2
    • /
    • pp.89-97
    • /
    • 2003
  • For safety evaluation of a rockfill dam, it is often necessary to investigate spatial distribution and dynamic characterization of weak zones such as fractures. For this purpose, both seismic and electric methods are adopted together in this research. The former employs the multichannel analysis of surface waves (MASW) method, and aims at the mapping of 2-D shear-wave velocity (Vs) profile along the dam axis that can be associated with dynamic properties of filled materials. The latter is carried out by DC- resistivity survey with a main purpose of mapping of spatial variations of physical properties of dam materials. Results from both methods are compared in their signature of anomalous zones. In addition, downhole seismic survey was carried out at three points within the seismic survey lines and results by downhole seismic survey are compared with the MASW results. We conclude that the MASW is an efficient method for dynamic characterization of dam-filling materials, and also that joint analyses of these two seemingly unrelated methods can lead to an effective safety evaluation of rock-fill dam.

  • PDF

Processing of Downhole S-wave Seismic Survey Data by Considering Direction of Polarization

  • Kim, Jin-Hoo;Park, Choon-B.
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.4
    • /
    • pp.321-328
    • /
    • 2002
  • Difficulties encountered in downhole S-wave (shear wave) surveys include the precise determination of shear wave travel times and determination of geophone orientation relative to the direction of polarization caused by the seismic source. In this study an S-wave enhancing and a principal component analysis method were adopted as a tool for determination of S-wave arrivals and the direction of polarization from downhole S-wave survey data. An S-wave enhancing method can almost double the amplitudes of S-waves, and the angle between direction of polarization and a geophone axis can be obtained by a principal component analysis. Once the angle is obtained data recorded by two horizontal geophones are transformed to principal axes, yielding so called scores. The scores gathered along depth are all in-phase, consequently, the accuracy of S-wave arrival picking could be remarkably improved. Applying this processing method to the field data reveals that the test site consists of a layered ground earth structure.

  • PDF

Application of the tri-axial drill-bit VSP method to drilling for geological survey in civil engineering

  • Soma Nobukazu;Utagawa Manabu;Seto Masahiro;Asanuma Hiroshi
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.1
    • /
    • pp.70-79
    • /
    • 2004
  • We have examined the applicability of the triaxial drill-bit VSP method (TAD-VSP) to the geological survey of possible sites for a high-level radioactive waste disposal repository. The seismic energy generated by a drill bit is measured by a downhole multi-component detector, and the resulting signals are processed to image the geological structure deep underground. In order to apply the TAD-VSP method to civil-engineering-scale drilling, we have developed a small but highly sensitive and precise three-component downhole seismic measurement system, and recorded drill-bit signals at a granite quarry. We have successfully imaged discontinuities in the granite, possibly related to fractures, as highly reflective zones. The discontinuities imaged by the TAD-VSP method correlate well with the results of other borehole observations. In conclusion, the TAD-VSP method is usable in geological investigations for civil engineering because the equipment is compact and it is simple to acquire the drill-bit signal.

A Study on the Reinforcement Effect of Low Flow Mortal Injection Method Using Field Test (현장시험을 이용한 저유동성 몰탈주입공법의 보강효과에 관한 연구)

  • Junyeong Jang;Gwangnam Lee;Daehyeon Kim
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.599-609
    • /
    • 2023
  • In the seismic retrofitting of harbor breakwaters in Korea, the recovery rate is often uncertain due to site conditions and site conditions, and problems continue to arise. Therefore, in this study, we analyzed the recovery rate and compressive strength of the improved material through drilling survey by grouting confirmation method after applying low-fluidity mortar injection method, and furthermore, we checked the elastic modulus by downhole test and tomography to confirm the reinforcement effect of soft ground after ground improvement. The experimental results showed that the average shear wave velocity of the ground increased from 229 m/s to 288 m/s in BH-1 and BH-3 boreholes to a depth of 28.0 m, and the average shear wave velocity of the ground to a depth of 30.0 m tended to increase from 224 m/s to 282 m/s in the downhole test. This is believed to be a result of the increased stiffness of the ground after reinforcement. The results of the tomographic survey showed that the Vs of the soft ground of the sample at Site 1 increased from 113 m/s to 214 m/s, and the Vs of the sample at Site 2 increased from 120 m/s to 224 m/s. This shows that the stiffness of the ground after seismic reinforcement is reinforced with hard soil, as the Vs value satisfies 180 m/s to 360 m/s in the classification of rock quality according to shear wave velocity.

On-Land Seismic Survey of Korea (한국의 육상 탄성파탐사)

  • Kwon, Byung-Doo
    • Economic and Environmental Geology
    • /
    • v.39 no.4 s.179
    • /
    • pp.441-450
    • /
    • 2006
  • The on-land seismic survey in Korea was begun in mid-1960s. Kim et al.(1967) of Korea Geological Survey reported on the result of gravity and seismic reflection surveys conducted in the Pohang area for the period of 1963-64 to assess its possibility of oil entrapment. Hyun and Kim (1966) carried out a refraction survey on the tunnel wall. Since then, the KGS geophysicists had conducted seismic surveys on Kyungsang sedimentary basin as a main project for several years. In 1970s, on-land seismic surveys had been conducted for various purposes such as site investigation for the nuclear power plants and industrial complex, exploration for ground water, mineral resources and underground tunnel. The first reflection survey with CMP acquisition was attempted in 1978 by using a digital recording system. But most of on-land seismic surveys had employed the refraction method until 1980s. In 1990s, high resolution reflection and various borehole seismic surveys such as tomography, uphole, downhole, cross-hole methods have been attempted by universities and engineering companies. The applications of on-land seismic surveys have been enlarged for both academic and industrial purposes such as investigation of geologic structure of the fault and tidal flat area, construction of highway, railroad and dam, geothermal energy and mineral resource exploration, environmental assessment for waste disposal sites and archaeological investigations. In 2002, the first crustal seismic survey was carried out on the profile of 294km length across the whole peninsular. It is expected that the advanced technology and experience acquired through offshore seismic surveys, which have been conducted in continental shelf of Korea and foreign oil fields, will stimulate the more active on-land seismic explorations.

Delineation of Geological Weak Zones in an Area of Small-scale Landslides Using Correlation between Electrical Resistivity, Bore, and Well-logging Data (전기비저항 및 시추·검층자료의 상관해석을 통한 소규모 산사태 지역의 지질 연약대 파악)

  • Lee, Sun-Joong;Kang, Yu-Gyeong;Lee, Cheol-Hee;Jeon, Su-In;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.30 no.1
    • /
    • pp.31-42
    • /
    • 2020
  • Electrical resistivity and downhole seismic surveys were conducted together with bore investigations and well-logging to examine subsurface structures in small-scale landslides at Sinjindo-ri, Geunheung-myeon, Taean-gun, Chungcheongnam-do, Republic of Korea in 2014. On the basis of the low N-values at depths of 5~7 m in borehole BH-2, downhole seismic and electrical dipole-dipole resistivity surveys were performed to delineate geological weak zones. The low-resistivity zones (<150 Ω·m) measure ~8 m in thickness and show a close depth correspondence to weathered soils consisting mainly of silty clays as identified from the bore investigations and well-logging data. Compared with weak zones in borehole BH-1, weak zones in BH-2 are characterized by lower densities (1.6~1.8 g/㎤) and resistivities (<150 Ω·m) and greater variation in Poisson's ratio. These observations can be explained by the presence of wet silty clays rich in weathered soil material that have resulted from heavy rainfall and rises in groundwater level. Downslope movements are probably caused by the sliding of wet clay that acts to reduce the strength of the weathered soil.

A Comparison of Soil Characteristics of Excavated Soils in Urban Area (도심지 굴착지반의 지반특성 비교)

  • Kim, Byungchan;Lee, JineHaeng
    • Journal of Korean Society of Disaster and Security
    • /
    • v.10 no.1
    • /
    • pp.35-42
    • /
    • 2017
  • This is a comparative study on the characteristics of excavated soils, which is proceeded using soil strength parameter by literature, geotechnical investigation, standard penetration test by drilling, and downhole test by borehole at six sites in urban areas. The results of these site surveys are used as basic data for the evaluation and development of prediction of ground subsidence risk. Geotechnical properties are estimated with the result of standard penetration test-N value and literature. The dynamic geotechnical characteristics are also estimated with top-down seismic exploration at borehole.

Site-Investigation of Underground Complex Plant Construction by Seismic Survey and Electrical Resistivity (탄성파 및 전기비저항을 활용한 지하복합 플랜트 건설 후보지 탐사)

  • Kim, Namsun;Lee, Jong-Sub;Kim, Ki-Seog;Kim, Sang Yeob;Park, Junghee
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.10
    • /
    • pp.49-60
    • /
    • 2022
  • Underground urbanization appears to be a promising solution in response to the shortage of construction sites in the above-ground space. In this context, an accurate evaluation of a construction site ensures the long-term performance of geosystems. This study characterizes potential sites for complex plants built in underground space using geophysical methods (i.e., seismic refraction exploration and electrical resistivity survey) and in situ tests (i.e., standard penetration tests (SPTs) and downhole tests). SPTs are conducted in nine boreholes BH-1-BH-9 to estimate the groundwater level and vertical distribution of geological structures. The seismic refraction method enables us to obtain the elastic wave velocity and thickness of each soil layer for each cross-sectional area. An electrical resistivity survey conducted using the dipole array method provides the electrical resistivity profiles of the cross-sectional area. Data obtained using geophysical techniques are used to assess the classification of the soil layer and bedrock, particularly the fracture zone. This study suggests that geotechnical information using in situ tests and geophysical methods are useful references to design an underground complex plant construction.

CHARACTERIZATION OF GEOTECHNICAL SITES BY MULTI-CHANNEL ANALSIS OF SURFACE WAVES(MCASW) (지표층의 탄성계수 측정을 위한 새로운 탄성파 방법)

  • 박춘병
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1995.10a
    • /
    • pp.15.2-22
    • /
    • 1995
  • Evaluating stiffness of near-surface materials has been one of the critically important tasks in many civil engineering works. It is the main goal of geotechnical characterization. The so-called deflection-response method evaluates the stiffness by measuring stress-strain behavior of the materials caused by static or dynamic load. This method, however, evaluates the overall stiffness and the stiffness variation with depth cannot be obtained. Furthermore, evaluation of a large-area geotechnical site by this method can be time-consuming, expensive, and damaging to many surface points of the site. Wave-propagation method, on the other hand, measures seismic velocities at different depths and stiffness profile (stiffness change with depth) can be obtained from the measured velocity data. The stiffness profile is often expressed by shear-wave (S-wave) velocity change with depth because S-wave velocity is proportional to the shear modulus. that is a direct indicator of stiffiiess. The crosshole and downhole method measures the seismic velocity by placing sources and receivers (geophones) at different depths in a borehole. Requirement of borehole installation makes this method also time-consuming, expensive, and damaging to the sites. Spectral-Analysis-of-Surface-Waves (SASW) method places both source and receivers at the surface, and records horizontally-propagating surface waves. Based upon the theory of surfacewave dispersion, the seismic velocities at different depths are calculated by analyzing the recorded surface-wave data. This method can be nondestructive to the sites. However, because only two receivers are used, the method requires multiple measurements with different field setups and, therefore, the method often becomes time-consuming and labor-intensive. Furthermore. the inclusion of noise wavefields cannot be handled properly, and this may cause the results by this method inaccurate. When multi-channel recording method is employed during the measurement of surface-waves, there are several benefits. First, usually single measurement is enough because multiple number (twelve or more) of receivers are used. Second, noise inclusion can be detected by coherency checking on the multi-channel data and handled properly so that it does not decrease the accuracy of the result. Third, various kinds of multi-channel processing techniques can be applied to f1lter unwanted noise wavefields and also to analyze the surface-wavefields more accurately and efficiently. In this way, the accuracy of the result by the method can be significantly improved. Fourth, the entire system of source, receivers, and recording-processing device can be tied into one unit, and the unit can be pulled by a small vehicle, making the survey speed very fast. In all these senses, multi-channel recording of surface waves is best suited for a routine method for geotechnical characterization in most of civil engineering works.

  • PDF

Time-Lapse Crosswell Seismic Study to Evaluate the Underground Cavity Filling (지하공동 충전효과 평가를 위한 시차 공대공 탄성파 토모그래피 연구)

  • Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.1
    • /
    • pp.25-30
    • /
    • 1998
  • Time-lapse crosswell seismic data, recorded before and after the cavity filling, showed that the filling increased the velocity at a known cavity zone in an old mine site in Inchon area. The seismic response depicted on the tomogram and in conjunction with the geologic data from drillings imply that the size of the cavity may be either small or filled by debris. In this study, I attempted to evaluate the filling effect by analyzing velocity measured from the time-lapse tomograms. The data acquired by a downhole airgun and 24-channel hydrophone system revealed that there exists measurable amounts of source statics. I presented a methodology to estimate the source statics. The procedure for this method is: 1) examine the source firing-time for each source, and remove the effect of irregular firing time, and 2) estimate the residual statics caused by inaccurate source positioning. This proposed multi-step inversion may reduce high frequency numerical noise and enhance the resolution at the zone of interest. The multi-step inversion with different starting models successfully shows the subtle velocity changes at the small cavity zone. The inversion procedure is: 1) conduct an inversion using regular sized cells, and generate an image of gross velocity structure by applying a 2-D median filter on the resulting tomogram, and 2) construct the starting velocity model by modifying the final velocity model from the first phase. The model was modified so that the zone of interest consists of small-sized grids. The final velocity model developed from the baseline survey was as a starting velocity model on the monitor inversion. Since we expected a velocity change only in the cavity zone, in the monitor inversion, we can significantly reduce the number of model parameters by fixing the model out-side the cavity zone equal to the baseline model.

  • PDF