• Title/Summary/Keyword: downhill section

Search Result 8, Processing Time 0.024 seconds

Analysis and design of inclined piles used to prevent downhill creep of unsaturated clay formations

  • Poorooshasb, H.B.;Miura, N.;Noorzad, Ali
    • Structural Engineering and Mechanics
    • /
    • v.6 no.3
    • /
    • pp.245-257
    • /
    • 1998
  • This paper present an analysis which may be used to obtain a rational design of a system of inclined piles used in preventing downhill creep of unsaturated clay formations. It uses two simple and relatively easy to measure parameters (an estimate of the maximum downhill creep together with a knowledge of the depth of the so called active zone) to calculate the required section size and the optimal spacing (pitch) of the piles for a desired efficiency of the system as a whole. Design charts are provided to facilitate the process.

Characteristic of Road Traffic Noise According to Road Vertical Alignment (도로 종단선형에 따른 도로교통 소음 특성 분석)

  • Moon, Hak Ryong;Han, Dae Cheol;Kang, Won Pyoung
    • International Journal of Highway Engineering
    • /
    • v.15 no.4
    • /
    • pp.95-105
    • /
    • 2013
  • PURPOSES: The purpose of this study is to research the influence of road traffic noise by road slope through the analysis of the field road traffic noise and determine consideration of road slope in the case of appling active noise cancellation. METHODS: This study measures vehicle's noise by the NCPX method at the three field sections such as uphill, downhill, and flatland. Total sound pressure and sound pressure level by the 1/3 octave band frequency are calculated through the raw field data. Total sound pressure level is compared by ANOVA test and T test statistically. The results obtained are compared in accordance with the road slope and the progress of the uphill section. RESULTS : The noise characteristic of early, medium, and last parts of uphill was found to be consistent when the vehicle was travelling uphill section. The result of statistical test, it was shown that total sound pressures are not different each other. According to the comparison by the geometry, sound pressure of the uphill section was higher than those of the flatland and downhill section in high frequency band. By the result of statistical test, total sound pressure are different according to geometry in the case of high vehicle speed. In the comparison result by road slope, each sound pressure level was found to be consistent in total frequency. However, total sound pressure proportionally increased according to road slope. CONCLUSIONS: It is found that the effect of road slope on noise generation was little in this experimental sites.

A study on the improvement of vehicle fuel economy by fuel-cut driving (연료차단 주행에 의한 연비 개선 효과에 대한 연구)

  • Ko, Kwang-Ho;Choi, Seong-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.498-503
    • /
    • 2012
  • It happens that the fuel is not injected when the driver doesn't push the acceleration pedal of vehicle with engine speed higher than 1,500rpm above the mid range of vehicle speed. This is called "fuel-cut function" and almost every modern vehicle is equipped with this function. This is activated frequently on the downhill area of highway and the quantity of vehicle-exhausted $CO_2$ gas can be zero on this area. With this fuel-cut function on the test highway, $CO_2$ gas from passenger car(2,000cc engine volume) can be reduced up to 4%. The fuel-cut function with CRUISE made in company AVL is simulated to find the most effective driving pattern on the downhill area. By simulating with CRUISE software, it is found that the lower limit of vehicle speed for fuel-cut should be raised to improve the fuel economy on the steeper downhill road. The fuel economy can be most economical when fuel-cut driving and reacceleration are completed on the section of downhill road.

Analysis of Vehicle Noise Effect by Microphone Position and Road Geometry (도로 기하구조에 따른 차량 Microphone 위치별 소음 영향 분석)

  • Moon, Hak Ryong;Han, Dae Cheol;Kang, Won Pyoung
    • International Journal of Highway Engineering
    • /
    • v.15 no.4
    • /
    • pp.75-83
    • /
    • 2013
  • PURPOSES: The purpose of study is to understand the characteristic of driving noise from the front and rear tire for effective active noise cancellation application. METHODS : As literature review, noise measurement methods were reviewed. Noise measurement conducted at three kind of section by road slope using CPX(Close Proximity Method). Noise data was compared by total sound pressure level and 1/3 octave band frequency sound pressure level. Also, each section was compared by T-test using SPSS. RESULTS : In the case of the uphill section, it was shown that the sound pressure level of the front tire at Sugwang-Ri and Sinchon-RI sections was higher than that of the rear tire in low and high frequency band. In the case of high slope section of Sangsaek-Ri, the sound pressure level of the front tire was higher than that of the rear tire in high frequency. Also, in the case of the downhill section, it was shown that the sound pressure level of the front tire at Sugwang-Ri and Sinchon-RI sections was higher than that of the rear tire in low frequency band. However, the sound pressure levels of both the front and rear tires were approximately the same in the high slope section of Sangsaek-Ri. The result of T-test showed that total sound pressures of the front and rear tires were not different from each other in the case of high slope and high speed. CONCLUSIONS: Road slope was not an important variable for effective active noise cancellation.

A modeling for an ionospheric channel using recursive digital filter (Recursive 디지털 필터에 의한 전리층 채널 모델링)

  • 김성진
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.2
    • /
    • pp.143-150
    • /
    • 2004
  • In this paper, a recursive digital filter realization for an ionospheric channel model is proposed. This realization is in the form of a cascade of identical second-order all-pass filters, and is determined by only three parameters; two coefficients of an all-pass section, and the number of sections. The values of these parameters are optimized by a nonlinear optimization algorithm called the "downhill simplex method", so that the resulting time delay function closely approximates that of the ionospheric channel model. Comparing with the nonrecursive digital filter realization, it can be shown that the proposed recursive-digital-filter-realization is advantageous in points of view for the numbers of filter coefficients and the realization.

  • PDF

A Safety Evaluation of Shoulder Rumble Strips on Expressway using Discriminant Analysis (판별분석을 활용한 노면요철포장의 교통사고감소 효과분석)

  • Park, Je Jin;Seo, Im ki;Kang, Dong Yun;Lee, Jae Hoon
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.1
    • /
    • pp.95-104
    • /
    • 2016
  • In general, the crash reduction effect of the rumble strip is reported to be about 30% in Korea, while it is about 40-60% in the United States. However, the effect is erroneously overestimated because the simple comparison was only made before and after the installation. Accordingly, this study will reassess the crash reduction effect of the rumble strip. The study will also examine the former's geometric characteristics as well as its effect on the causes of the crash. This study analyzed the crash effect while taking into consideration the changes in the horizontal and vertical alignment, including the width of pavement shoulders, using the crash data for two years before and after the installation of the rumble strip. The types of crash caused by the rumble strip were identified using the classification discriminant function. The crash effect on the rumble strip is estimated to be 28.3%, but the pure effect, with the exception of the effect by other elements, was analyzed to be 7.4%. For each expressway design element, the downhill section (2.0-3.0%), the section with less than 3,000 m and more than 10,000 m of the curve radius, and the section with less than 3.0 m of the pavement shoulder width were found to be effective in crash reduction. For each cause of crash, the rumble strip was analyzed to be effective in the reduction of crash caused by "not keeping the safe distance", "sleeping", "negligence in keeping eyes forward", and "excessive handle operation". In particular, the rumble strip was analyzed and seen to be especially effective in preventing crash caused by "not keeping a safe distance," and "sleeping". The installation of the rumble strip was found to be effective in the prevention of crash caused by "not keeping the safe distance" and "sleeping". The results of this study may thus be used in deciding the causes of crash and the installation location of the tailored rumble strip that would be suitable for the geometric characteristics of the roads. This study will also be helpful in the establishment of future traffic safety measures.

A study on the enhancement and performance optimization of parallel data processing model for Big Data on Emissions of Air Pollutants Emitted from Vehicles (차량에서 배출되는 대기 오염 물질의 빅 데이터에 대한 병렬 데이터 처리 모델의 강화 및 성능 최적화에 관한 연구)

  • Kang, Seong-In;Cho, Sung-youn;Kim, Ji-Whan;Kim, Hyeon-Joung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.6
    • /
    • pp.1-6
    • /
    • 2020
  • Road movement pollutant air environment big data is a link between real-time traffic data such as vehicle type, speed, and load using AVC, VDS, WIM, and DTG, which are always traffic volume survey equipment, and road shape (uphill, downhill, turning section) data using GIS. It consists of traffic flow data. Also, unlike general data, a lot of data per unit time is generated and has various formats. In particular, since about 7.4 million cases/hour or more of large-scale real-time data collected as detailed traffic flow information are collected, stored and processed, a system that can efficiently process data is required. Therefore, in this study, an open source-based data parallel processing performance optimization study is conducted for the visualization of big data in the air environment of road transport pollution.

Development of a Brain Phantom for Multimodal Image Registration in Radiotherapy Treatment Planning

  • H. S. Jin;T. S. Suh;R. H. Juh;J. Y. Song;C. B. Y. Choe;Lee, H .G.;C. Kwark
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.450-453
    • /
    • 2002
  • In radiotherapy treatment planning, it is critical to deliver the radiation dose to tumor and protect surrounding normal tissue. Recent developments in functional imaging and radiotherapy treatment technology have been raising chances to control tumor saving normal tissues. A brain phantom which could be used for image registration technique of CT-MR and CT-SPECT images using surface matching was developed. The brain phantom was specially designed to obtain imaging dataset of CT, MR, and SPECT. The phantom had an external frame with 4 N-shaped pipes filled with acryl rods, Pb rods for CT, MR, and SPECT imaging, respectively. 8 acrylic pipes were inserted into the empty space of the brain phantom to be imaged for geometric evaluation of the matching. For an optimization algorithm of image registration, we used Downhill simplex algorithm suggested as a fast surface matching algorithm. Accuracy of image fusion was assessed by the comparison between the center points of the section of N-shaped bars in the external frame and the inserted pipes of the phantom and minimized cost functions of the optimization algorithm. Technique with partially transparent, mixed images using color on gray was used for visual assessment of the image registration process. The errors of image registration of CT-MR and CT-SPECT were within 2mm and 4mm, respectively. Since these errors were considered within a reasonable margin from the phantom study, the phantom is expected to be used for conventional image registration between multimodal image datasets..

  • PDF