• 제목/요약/키워드: down-regulation

검색결과 1,256건 처리시간 0.024초

Anticancer Potential of an Ethanol Extract of Saussurea Involucrata against Hepatic Cancer Cells in vitro

  • Byambaragchaa, Munkhzaya;Cruz, Joseph Dela;Kh, Altantsetseg;Hwang, Seong-Gu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권18호
    • /
    • pp.7527-7532
    • /
    • 2014
  • Saussurea involucrata is a Mongolian medicinal plant well known for its effects in promoting blood circulation, and anti-inflammation and analgesic functions. Earlier studies reported that Saussurea involucrata has anticancer activity. The purpose of this study was to confirm the anticancer activity of an ethanol extract of Saussurea involucrata against hepatic cancer and elucidate its mechanisms of action. Hepatocellular carcinoma cells were tested in vitro for cytotoxicity, AO/EB staining for apoptotic cells, apoptotic DNA fragmentation and cell cycle distribution in response to Saussurea involucrata extract (SIE). The mRNA expression of caspase-3,-9 and Cdk2 and protein expression of caspase-3,-9, PARP, XIAP, Cdk2 and p21 were analyzed through real time PCR and Western blotting. Treatment with SIE inhibited HepG2 cell proliferation dose- and time-dependently, but SIE only exerted a modest cytotoxic effect on a viability of Chang human liver cells. Cells exposed to SIE showed typical hallmarks of apoptotic cell death. Cell cycle analysis revealed that SIE caused G1-phase arrest in HepG2 cells. In conclusion, Saussurea involucrata ethanol extract has potential cytotoxic and apoptotic effects on human hepatocellular carcinoma cells. Its mechanism of action might be associated with the inhibition of DNA synthesis, cell cycle (G1) arrest and apoptosis induction through up-regulation of the protein expressions of caspase-3,-9 a nd p21, degradation of PARP and down-regulation of the protein expression of Cdk2 and XIAP.

S-benzyl-cysteine-mediated Cell Cycle Arrest and Apoptosis Involving Activation of Mitochondrial-dependent Caspase Cascade through the p53 Pathway in Human Gastric Cancer SGC-7901 Cells

  • Sun, Hua-Jun;Meng, Lin-Yi;Shen, Yang;Zhu, Yi-Zhun;Liu, Hong-Rui
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권11호
    • /
    • pp.6379-6384
    • /
    • 2013
  • S-benzyl-cysteine (SBC) is a structural analog of S-allylcysteine (SAC), which is one of the major water-soluble compounds in aged garlic extract. In this study, anticancer activities and the underlying mechanisms of SBC action were investigated and compared these with those of SAC using human gastric cancer SGC-7901 cells. SBC significantly suppressed the survival rate of SGC-7901 cells in a concentration- and time-dependent manner, and the inhibitory activities of SBC were stronger than those of SAC. Flow cytometry revealed that SBC induced G2-phase arrest and apoptosis in SGC-7901 cells. Typical apoptotic morphological changes were observed by Hoechst 33258 dye assay. SBC-treatment dramatically induced the dissipation of mitochondrial membrane potential (${\Delta}{\Psi}m$), and enhanced the enzymatic activities of caspase-9 and caspase-3 whilst hardly affecting caspase-8 activity. Furthermore, Western blotting indicated that SBC-induced apoptosis was accompanied by up-regulation of the expression of p53, Bax and the down-regulation of Bcl-2. Taken together, this study suggested that SBC exerts cytotoxic activity involving activation of mitochondrial-dependent apoptosis through p53 and Bax/Bcl-2 pathways in human gastric cancer SGC-7901 cells.

5-Aza-2'-deoxycytidine Induces Hepatoma Cell Apoptosis via Enhancing Methionine Adenosyltransferase 1A Expression and Inducing S-Adenosylmethionine Production

  • Liu, Wei-Jun;Ren, Jian-Guo;Li, Ting;Yu, Guo-Zheng;Zhang, Jin;Li, Chang-Sheng;Liu, Zhi-Su;Liu, Quan-Yan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권11호
    • /
    • pp.6433-6438
    • /
    • 2013
  • In hepatocellular cancer (HCC), lack of response to chemotherapy and radiation treatment can be caused by a loss of epigenetic modifications of cancer cells. Methionine adenosyltransferase 1A is inactivated in HCC and may be stimulated by an epigenetic change involving promoter hypermethylation. Therefore, drugs releasing epigenetic repression have been proposed to reverse this process. We studied the effect of the demethylating reagent 5-aza-2'-deoxycitidine (5-Aza-CdR) on MAT1A gene expression, DNA methylation and S-adenosylmethionine (SAMe) production in the HCC cell line Huh7. We found that MAT1A mRNA and protein expression were activated in Huh7 cells with the treatment of 5-Aza-CdR; the status of promoter hypermethylation was reversed. At the same time, MAT2A mRNA and protein expression was significantly reduced in Huh7 cells treated with 5-Aza-CdR, while SAMe production was significantly induced. However, 5-Aza-CdR showed no effects on MAT2A methylation. Furthermore, 5-Aza-CdR inhibited the growth of Huh7 cells and induced apoptosis and through down-regulation of Bcl-2, up-regulation of Bax and caspase-3. Our observations suggest that 5-Aza-CdR exerts its anti-tumor effects in Huh7 cells through an epigenetic change involving increased expression of the methionine adenosyltransferase 1A gene and induction of S-adenosylmethionine production.

Development of Anti-Obesity Agent from Resource Plants

  • Jeong, Yong-Joon;Kang, Se-Chan
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2012년도 정기총회 및 춘계학술발표회
    • /
    • pp.15-15
    • /
    • 2012
  • Obesity is a physical condition that results from excessive storage of fat in the body. The present study examined the anti-obesity effects of the selected natural medicine, Galla rhois extract (GRE) and solvent fractions on 3T3-L1 preadipocytes and in vivo studies. Here, we show that EtOAc fraction of Galla rhois inhibits the differentiation of the 3T3-L1 preadipocytes induced by differentiated medium in a dose-dependent manner. To investigate the effect of the GRE-EtOAc fraction on obesity in high fat diet-fed C57BL/6 mice, which included a normal diet (ND), high-fat diet (HFD) and HFD+GRE concentration-dependent, were fed to the mice for 6 weeks. The GRE-EtOAc fraction was inhibited the highest adipocyte differentiation in vitro, the GRE supplement significantly decreased body weight and visceral fat mass compared to the HFD group. The total cholesterol and triglyceride levels in the plasma were significantly decreased by GRE supplementation compared with those of the HFD group. Also, we aimed to determine the differentiation inhibition and the modulation of differentiation genes brought about by the Galla rhois in adipocyte. A cDNA microarray-based method was introduced for the high contents screening (HCS) of gene expressions. This technology has revolutionized gene expression studies by providing the means to measure mRNA levels in thousands of genes simultaneously in simple and complex biological samples. 13 genes were founded to be affected in their expression levels by more than 5-fold up-regulation after 4 days treatment with the EtOAc fraction from Galla rhois. Otherwise, 21 genes were founded to be affected in their expression levels by more than 5-fold down-regulation treated with the EtOAc fraction. Therefore, Galla rhois extract may be considered for use in a therapeutic agent to control obesity.

  • PDF

행인(杏仁)이 전립선 암세포의 Bax, Bcl-2 및 Caspase-3에 미치는 영향 (Effect of Armeniacae Amarum Semen on Expression of Bax and Bcl-2 mRNA and Caspase-3 Activity of Human DU145 Prostate Cancer Cells)

  • 이도경;김연섭;김도훈
    • 한방안이비인후피부과학회지
    • /
    • 제29권3호
    • /
    • pp.159-167
    • /
    • 2016
  • Prostate cancer is one of the most common non-skin cancers in men. Armeniacae Amarum Semen has traditionally been used for the treatment of inflammation diseases, leprosy, leucoderma, and tumors. Apoptosis, which is also known as programmed cell death, is an important mechanism in cancer treatment.Objectives : We observed whether an aqueous extract of Armeniacae Amarum Semen induces apoptotic cell death in human DU145 prostate cancer cells.Methods : We treated DU145 cells with Armeniacae Amarum Semen extract and investigated characteristics of apoptosis. And investigated whether treated with Armeniacae Amarum Semen extract increased Bax mRNA expression, Bcl-2 mRNA expression, caspase-3 enzyme activity and their protein level.Results : We have shown that Armeniacae Amarum Semen extract can induce apoptotic cell death in human DU145 prostate cancer cells by caspase-3 activation through the down-regulation on Bcl-2 expression and the up-regulation on Bax expression.Conclusions : It can be expected that an aqueous extract of Armeniacae Amarum Semen may offer a valuable means for the treatment of prostate cancers.

A Fermented Ginseng Extract, BST204, Inhibits Proliferation and Motility of Human Colon Cancer Cells

  • Park, Jong-Woo;Lee, Jae-Cheol;Ann, So-Ra;Seo, Dong-Wan;Choi, Wahn-Soo;Yoo, Young-Hyo;Park, Sun-Kyu;Choi, Jung-Young;Um, Sung-Hee;Ahn, Seong-Hoon;Han, Jeung-Whan
    • Biomolecules & Therapeutics
    • /
    • 제19권2호
    • /
    • pp.211-217
    • /
    • 2011
  • Panax ginseng CA Meyer, a herb from the Araliaceae, has traditionally been used as a medicinal plant in Asian countries. Ginseng extract fermented by ginsenoside-${\beta}$-glucosidase treatment is enriched in ginsenosides such as Rh2 and Rg3. Here we show that a fermented ginseng extract, BST204, has anti-proliferative and anti-invasive effects on HT-29 human colon cancer cells. Treatment of HT-29 cells with BST204 induced cell cycle arrest at $G_1$ phase without progression to apoptosis. This cell cycle arrest was accompanied by up-regulation of tumor suppressor proteins, p53 and p21$^{WAF1/Cip1}$, down-regulation of the cyclin-dependent kinase/cyclins, Cdk2, cyclin E, and cyclin D1 involved in $G_1$ or $G_1/S$ transition, and decrease in the phosphorylated form of retinoblastoma protein. In addition, BST204 suppressed the migration of HT-29 cells induced by 12-O-tetradecanoylphorbol-13-acetate, which correlated with the inhibition of metalloproteinase-9 activity and extracellular signal-regulated kinase activity. The effects of BST204 on the proliferation and the invasiveness of HT-29 cells were similar to those of Rh2. Taken together, the results suggest that fermentation of ginseng extract with ginsenoside-${\beta}$-glucosidase enhanced the anti-proliferative and the anti-invasive activity against human colon cancer cells and these anti-tumor effects of BST204 might be mediated in part by enriched Rh2.

Betulinic Acid, a Naturally Occurring Triterpene found in the Bark of the White Birch Tree induces Apoptotic Cell Death in KB Cervical Cancer Cells through Specificity Protein 1 and its Downstream

  • Shin, Ji-Ae;Choi, Eun-Sun;Jung, Ji-Youn;Cho, Nam-Pyo;Cho, Sung-Doe
    • 한국식품위생안전성학회지
    • /
    • 제26권2호
    • /
    • pp.150-153
    • /
    • 2011
  • 흰자작나무의 껍질에서 발견된 자연적으로 발생한 triterpene 인 betulinic acid (BA)가 다양한 종류의 암세포와 동물 모델에서 세포사멸을 유도하는 것으로 알려져 있다. 하지만 자궁경부암세포에서 BA의 화학적 암예방 효과는 연구되지 않은 상태이다. 따라서 이 연구에서는 사람 자궁경부암세포주인 KB세포를 이용하여, BA가 세포증식을 감소시키고 세포사멸을 유도하는 것을 확인하였다. KB 세포에서 BA에 의해 유도되는 세포증식의 억제는 specificity protein 1 (Sp1)과 Sp1의 표적단백질인 myeloid cell leukemia-1 (Mcl-1) 그리고 survivin의 감소 때문인 것으로 확인되었다. 따라서 BA는 자궁경부암에서 과다 발현되는 Sp1을 조절하는 새로운 화학적 암예방 물질로서 작용할 수 있을 것으로 생각된다.

MiR-99a Inhibits Cell Proliferation and Tumorigenesis through Targeting mTOR in Human Anaplastic Thyroid Cancer

  • Huang, Hou-Gang;Luo, Xi;Wu, Shuai;Jian, Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권12호
    • /
    • pp.4937-4944
    • /
    • 2015
  • MicroRNAs (miRNAs) are emerging as critical regulators in carcinogenesis and tumor progression. Recently, miR-99a has been reported as a tumor suppressor gene in various human cancers, but its functions in the context of anaplastic thyroid cancer (ATC) remain unknown. In this study, we reported that miR-99a was commonly downregulated in ATC tissue specimens and cell lines with important functional consequences. Overexpression of miR-99a not only dramatically reduced ATC cell viability by inducing cell apoptosis and accumulation of cells at G1 phase, but also inhibited tumorigenicity in vivo. We then screened and identified a novel miR-99a target, mammalian target of rapamycin (mTOR), and it was further confirmed by luciferase assay. Up-regulation of miR-99a would markedly reduce the expression of mTOR and its downstream phosphorylated proteins (p-4E-BP1 and p-S6K1). Similar to restoring miR-99a expression, mTOR down-regulation suppressed cell viability and increased cell apoptosis, whereas restoration of mTOR expression significantly reversed the miR-99a antitumor activity and the inhibition of mTOR/p-4E-BP1/p-S6K1 signal pathway profile. In clinical specimens and cell lines, mTOR was commonly overexpressed and its protein levels were statistically inversely correlated with miR-99a expression. Taken together, our results demonstrated for the first time that miR-99a functions as a tumor suppressor and plays an important role in inhibiting the tumorigenesis through targeting the mTOR/p-4E-BP1/p-S6K1 pathway in ATC cells. Given these, miR-99a may serve as a novel prognostic/diagnostic and therapeutic target for treating ATC.

LY294002 Induces G0/G1 Cell Cycle Arrest and Apoptosis of Cancer Stem-like Cells from Human Osteosarcoma Via Down-regulation of PI3K Activity

  • Gong, Chen;Liao, Hui;Wang, Jiang;Lin, Yang;Qi, Jun;Qin, Liang;Tian, Lin-Qiang;Guo, Feng-Jing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권7호
    • /
    • pp.3103-3107
    • /
    • 2012
  • Osteosarcoma, the most common primary mesenchymal malignant tumor, usually has bad prognosis in man, with cancer stem-like cells (CSCs) considered to play a critical role in tumorigenesis and drug-resistance. It is known that phosphatidylinositol 3-kinase (PI3K) is involved in regulation of tumor cell fates, such as proliferation, cell cycling, survival and apoptosis. Whether and how PI3K and inhibitors might cooperate in human osteosarcoma CSCs is still unknown. We therefore evaluated the effects of LY294002, a PI3K inhibitor, on the cell cycle and apoptosis of osteosarcoma CSCs in vitro. LY294002 prevented phosphorylation of protein kinase B (PKB/Akt) by inhibition of PI3K phosphorylation activity, thereby inducing G0/G1 cell cycle arrest and apoptosis in osteosarcoma CSCs. Further studies also demonstrated that apoptosis induction by LY294002 is accompanied by activation of caspase-9, caspase-3 and PARP, which are involved in the mitochondrial apoptosis pathway. Therefore, our results indicate PI3K inhibitors may represent a potential strategy for managing human osteosarcoma via affecting CSCs.

Anti-CSC Effects in Human Esophageal Squamous Cell Carcinomas and Eca109/9706 Cells Induced by Nanoliposomal Quercetin Alone or Combined with CD 133 Antiserum

  • Zheng, Nai-Gang;Mo, Sai-Jun;Li, Jin-Ping;Wu, Jing-Lan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권20호
    • /
    • pp.8679-8684
    • /
    • 2014
  • CD133 was recently reported to be a cancer stem cell and prognostic marker. Quercetin is considered as a potential chemopreventive agent due to its involvement in suppression of oxidative stress, proliferation and metastasis. In this study, the expression of CD133/CD44 in esophageal carcinomas and Eca109/9706 cells was explored. In immunoflurorescence the locations of $CD133^+$ and multidrug resistance 1 $(MDR1)^+$ in the same E-cancer cells were coincident, mainly in cytomembranes. In esophageal squamous cell carcinomas detected by double/single immunocytochemistry, small $CD133^+$ cells were located in the basal layer of stratified squamous epithelium, determined as CSLC (cancer stem like cells); $CD44^+$ surrounding the cells appeared in diffuse pattern, and the larger $CD44^+$ (hi) cells were mainly located in the prickle cell layer of the epithelium, as progenitor cells. In E-cancer cells exposed to nanoliposomal quercetin (nLQ with cytomembrane permeability), down-regulation of NF-${\kappa}Bp65$, histone deacetylase 1 (HDAC1) and cyclin D1 and up-regulation of caspase-3 were shown by immunoblotting, and attenuated HDAC1 with nuclear translocation and promoted E-cadherin expression were demonstrated by immunocytochemistry. In particular, enhanced E-cadherin expression reflected the reversed epithelial mesenchymal transition (EMT) capacity of nLQ, acting as cancer attenuator/preventive agent. nLQ acting as an HDAC inhibitor induced apoptotic cells detected by TUNEL assay mediated via HDAC-NF-${\kappa}B$ signaling. Apoptotic effects of liposomal quercetin (LQ, with cytomembrane-philia) combined with CD133 antiserum were also detected by CD133 immunocytochemistry combined with TUNEL assay. The combination could induce greater apoptotic effects than nLQ induced alone, suggesting a novel anti-CSC treatment strategy.