• Title/Summary/Keyword: double-torsion test

Search Result 6, Processing Time 0.021 seconds

Influence of the Geometry of Guide Groove on Stress Corrosion Index of Rock in Double Torsion Test (이중 비틀림 시험에서 유도 홈의 형상이 암석의 응력부식지수에 미치는 영향)

  • 정해식;미원우삼;전석원
    • Tunnel and Underground Space
    • /
    • v.14 no.5
    • /
    • pp.363-372
    • /
    • 2004
  • Double torsion (DT) tests were carried out to investigate the influence of the geometry of guide groove on stress corrosion index of Kumamoto andesite. The fracture toughness was measured in the constant displacement rate, which was set to 2.07 MN/m$^{3}$2/ in average regardless of crack velocity. Stress corrosion indices, n were evaluated using specimens with rectangular, circular and triangular grooves and were 37, 36 and 38 in average, respectively. The n values were constant regardless of the groove geometry, however the DT specimen with triangular groove geometry showed the largest standard deviation in the relationship between crack velocity and stress intensity factor. The DT test was found to be effective in using a rectangular-grooved specimen and the width of the groove must be greater than the average grain size of minerals.

Uni-axial behaviour of normal-strength CFDST columns with external steel rings

  • Dong, C.X.;Ho, J.C.M.
    • Steel and Composite Structures
    • /
    • v.13 no.6
    • /
    • pp.587-606
    • /
    • 2012
  • Concrete-filled-steel-tubular (CFST) columns have been well proven to improve effectively the strength, stiffness and ductility of concrete members. However, the central part of concrete in CFST columns is not fully utilised under uni-axial compression, bending and torsion. It has small contribution to both flexural and torsion strength, while it can be replaced effectively by steel with smaller area to give similar load-carrying capacity. Also, the confining pressure in CFST columns builds up slowly because the initial elastic dilation of concrete is small before micro-crackings of concrete are developed. From these observations, it is convinced that the central concrete can be effectively replaced by another hollow steel tube with smaller area to form double-skinned concrete-filled-steel-tubular (CFDST) columns. In this study, a series of uni-axial compression tests were carried out on CFDST and CFST columns with and without external steel rings. From the test results, it was observed that on average that the stiffness and elastic strength of CFDST columns are about 25.8% and 33.4% respectively larger than CFST columns with similar equivalent area. The averaged axial load-carrying capacity of CFDST columns is 7.8% higher than CFST columns. Lastly, a theoretical model that takes into account the confining effects of steel tube and external rings for predicting the uni-axial load-carrying capacity of CFDST columns is developed.

Subcritical crack growth in rocks in an aqueous environment (수성환경에서 암석 내의 임계하 균열성장 연구)

  • Nara, Yoshitaka;Takada, Masafumi;Igarashi, Toshifumi;Hiroyoshi, Naoki;Kaneko, Katsuhiko
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.163-171
    • /
    • 2009
  • Subcritical crack growth is one of the main causes of time-dependent fracturing in rock. In the present study, we investigated subcritical crack growth in rock in distilled water (pH = 5.7) and in an aqueous solution of sodium hydroxide (NaOHaq, pH = 12), comparing the results to those in air. We also investigated the effect of the pH in an aqueous environment. We used andesite and granite for all our tests. We determined the relationship between the crack velocity and the stress intensity factor using the double-torsion test under conditions of controlled temperature. We showed that crack velocities in water were higher than those in air, in agreement with other research results indicating that crack velocity increases in water. When we compared our results for NaOHaq with those for water, however, we found that the crack velocity at the same stress intensity factor did not change even though the pH of the surrounding environment was different. This result does not agree with the accepted understanding that hydroxide ions accelerate subcritical crack growth in rocks. We concluded that the pH at the crack tip influences subcritical crack growth, and not the bulk pH, which has little effect.

Stress corrosion index of Kumamoto andesite estimated from two types of testing method

  • Jeong Hae-Sik;Nara Yoshitaka;Obara Yuzo;Kaneko Katsuhiko
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.221-228
    • /
    • 2003
  • The stress corrosion index of Kumamoto andesite are evaluated by two types of testing method. One is the uniaxial compression test under various water vapor pressures, and the other is the double torsion (DT) test under a constant water vapor pressure. For the uniaxial compression tests, the uniaxial compressive strength increases linearly with decreasing water vapor pressure on the double logarithmic coordinates. As the results, the stress corrosion index obtained is estimated 44. On the other hand, in the DT test, the relaxation (RLX) test and the constant displacement rate (CDR) test were conducted. For the CDR test, as the displacement rate of loading point increases, the crack velocity increases. However, the fracture toughness is constant regardless of the change in displacement rate and the average fracture toughness is evaluated $2.07MN/m^{3/2}$. For the RLX test, the crack velocity-stress intensity factor curves are smooth and linear. The stress corrosion index estimated from the curves is 37. Comparing stress corrosion indexes in the uniaxial compression test and the DT test, there is no significant difference in these values, and they are considered to be in coincident each other regardless of testing methods. Therefore, it is concluded that stress corrosion is one of material constants of rock.

  • PDF

Experimental study of anisotropic behavior of PU foam used in sandwich panels

  • Chuda-Kowalska, Monika;Garstecki, Andrzej
    • Steel and Composite Structures
    • /
    • v.20 no.1
    • /
    • pp.43-56
    • /
    • 2016
  • Polyurethane foam with low density used in sandwich panels is examined in the paper. A series of experiments was carried out to identify mechanical parameters of the foam. Various experimental methods were used for determining the shear modulus, namely a four and three point bending tests (the most common in engineering practice), a double-lap shear test and a torsion test. The behavior of PU in axial compression and tension was also studied. The experiments revealed pronounced anisotropy of the PU foam. An orthotropic model is proposed. Limitations of application of isotropic model of PU in engineering practice is also discussed.

Acoustic Emission and Indentation Fracture Method for the Engineering Ceramics (세라미스 파괴인성평가에 있어서 IF법과 AE)

  • 김부안;문창권
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.61-65
    • /
    • 2001
  • The fracture toughness of ceramics can be measure by such various methods as DT (double torsion), CN (chevron notch) etc. But, the application of these methods to the engineering ceramics is very difficult because of its very high hardness. So, IF (indentation fracture) method is generally used for the evaluation of fracture toughness of ceramics. The Median crack induced by the sharp Vickers indenter was compared with the detected AE (acoustic emission) signal. On the silicon nitride ceramics, the AE test results agree fairly well with the median crack occurance and growth process. But, on the alumina, very many complicated crack signals were detected besides median crack. It can be considered that the IF methods must be used in limited engineering ceramics materials.

  • PDF