• Title/Summary/Keyword: double-stranded RNA

Search Result 129, Processing Time 0.03 seconds

Dietary Risk Assessment of Snf7 dsRNA for Coccinella septempunctata

  • Jung, Young Jun;Seol, Min-A;Choi, Wonkyun;Lee, Jung Ro
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.2 no.3
    • /
    • pp.210-218
    • /
    • 2021
  • Recently, pest-resistant living modified (LM) crops developed using RNA interference (RNAi) technology have been imported into South Korea. However, the potential adverse effects of unintentionally released RNAi-based LM crops on non-target species have not yet been reported. Coccinella septempunctata, which feeds on aphids, is an important natural enemy insect which can be exposed to the double-stranded RNA (dsRNA) produced by RNAi-based LM plants. To assess the risk of ingestion of Snf7 dsRNA by C. septempunctata, we first identified the species through morphological analysis of collected insects. A method for species identification at the gene level was developed using a specific C. septempunctata 12S rRNA. Furthermore, an experimental model was devised to assess the risk of Snf7 dsRNA ingestion in C. septempunctata. Snf7 dsRNA was mass-purified using an effective dsRNA synthesis method and its presence in C. septempunctata was confirmed after treatment with purified Snf7 dsRNA. Finally, the survival rate, development time, and dry weight of Snf7 dsRNA-treated C. septempunctata were compared with those of GFP and vATPase A dsRNA control treatments, and no risk was found. This study illustrates an effective Snf7 dsRNA synthesis method, as well as a high-concentration domestic insect risk assessment method which uses dsRNA to assess the risk of unintentional released of LM organisms against non-target species.

SECONDARY STRUCTURE OF THE PANHANDLE RNA OF INFLUENZA VIRUS A STUDIED BY NMR SPECTROSCOPY

  • Cheong, Hae-Kap;Park, Byong-Seok;Chaejoon Cheong
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1996.07a
    • /
    • pp.31-31
    • /
    • 1996
  • The double-stranded panhandle structure of the influenza virus RNA is important for the replication, transcription and packaging into the virion of the vRNA. The solution structure of a 34-nucleotide-long RNA which contains the conserved panhandle sequences has been investigated by one- and two-dimensional NMR spectroscopies. (omitted)

  • PDF

Targeted Suppression of Connexin 43 in Ovine Preimplantation Embryos by RNA Interference Using Long Double-stranded RNA

  • Yan, Zhen;Ma, Yu Zhen;Liu, Dong jun;Cang, Ming;Wang, Rui;Bao, Shorgan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.4
    • /
    • pp.456-464
    • /
    • 2010
  • RNA interference (RNAi) is an acknowledged useful and effective tool to study gene function in various cells. Here, we suppressed the Connexin 43 (Cx 43) gene expression during in vitro development of ovine pre-implantation embryos using the RNAi method. The 353 bp Cx 43 double-stranded RNA was microinjected into in vitro fertilized ovine zygotes, and the levels of target mRNA and protein were investigated. Control groups included uninjected zygotes or those injected with RNase-free water. The dsRNA injection resulted in the specific reduction of Cx 43 transcripts as analyzed by quantitative real-time RT-PCR and decreased protein levels as shown by Western blot analysis at the blastocyst stage. Microinjection of Cx 43 dsRNA led to 20.3%, 21.7% and 34.5% blastocyst rates and 19.2%, 37.5% and 41.3% hatched blastocyst rates in Cx 43 dsRNA-injected, water-injected and uninjected groups, respectively. Then the RNAi could not significantly affect cell number and cell death rates of blastocysts. Therefore, suppression of Cx 43 dsRNA and proteins did not apparently affect the development potential of ovine pre-implantation embryos but may play a role in embryo quality. RNAi technology is a promising approach to study gene function in early ovine embryogenesis.

Cytokine Inductions and Intracellular Signal Profiles by Stimulation of dsRNA and SEB in the Macrophages and Epithelial Cells

  • Jun-Pyo Choi;Purevsuren Losol;Ghazal Ayoub;Mihong Ji;Sae-Hoon Kim;Sang-Heon Cho;Yoon-Seok Chang
    • IMMUNE NETWORK
    • /
    • v.22 no.2
    • /
    • pp.15.1-15.16
    • /
    • 2022
  • Foreign molecules, including viruses and bacteria-derived toxins, can also induce airway inflammation. However, to the best of our knowledge, the roles of these molecules in the development of airway inflammation have not been fully elucidated. Herein, we investigated the precise role and synergistic effect of virus-mimicking double-stranded RNA (dsRNA) and staphylococcal enterotoxin B (SEB) in macrophages and epithelial cells. To identify cytokine expression profiles, both the THP-1-derived macrophages and BEAS-2B epithelial cells were stimulated with dsRNA or SEB. A total of 21 cytokines were evaluated in the culture supernatants. We observed that stimulation with dsRNA induced cytokine production in both cell types. However, cytokine production was not induced in SEB-stimulated epithelial cells, compared to the macrophages. The synergistic effect of dsRNA and SEB was evaluated observing cytokine level and intracellular phospho-signaling. Fifteen different types were detected in high-dose dsRNA-stimulated epithelial cells, and 12 distinct types were detected in macrophages; those found in macrophages lacked interferon production compared to the epithelial cells. Notably, a synergistic effect of cytokine induction by co-stimulation of dsRNA and SEB was observed mainly in epithelial cells, via activation of most intracellular phosphor-signaling. However, macrophages only showed an accumulative effect. This study showed that the type and severity of cytokine productions from the epithelium or macrophages could be affected by different intensities and a combination of dsRNA and SEB. Further studies with this approach may improve our understanding of the development and exacerbation of airway inflammation and asthma.

Double-stranded RNA virus in Korean Isolate IH-2 of Trichomonas vaginalis

  • Kim, Jong-Wook;Chung, Pyung-Rim;Hwang, Myung-Ki;Choi, Eun-Young
    • Parasites, Hosts and Diseases
    • /
    • v.45 no.2 s.142
    • /
    • pp.87-94
    • /
    • 2007
  • In this study, we describe Korean isolates of Trichomonas vaginalis infected with double-stranded (ds) RNA virus (TVV). One T. vaginalis isolate infected with TVV IH-2 evidenced weak pathogenicity in the mouse assay coupled with the persistent presence of a dsRNA, thereby indicating a hypovirulence effect of dsRNA in T. vaginalis. Cloning and sequence analysis results revealed that the genomic dsRNA of TVV IH-2 was 4,647 bp in length and evidenced a sequence identity of 80% with the previously-described TVV 1-1 and 1-5, but only a 42% identity with TVV 2-1 and 3 isolates. It harbored 2 overlapping open reading frames of the putative capsid protein and dsRNA-dependent RNA polymerase (RdRp). As previously observed in the TVV isolates 1-1 and 1-5, a conserved ribosomal slip-page heptamer (CCUUUUU) and its surrounding sequence context within the consensus 14-nt overlap implied the gene expression of a capsid protein-RdRp fusion protein, occurring as the result of a potential ribosomal frameshift event. The phylogenetic analysis of RdRp showed that the Korean TVV If-2 isolate formed a compact group with TVV 1-1 and 1-5 isolates, which was divergent from TVV 2-1, 3 and other viral isolates classified as members of the Giardiavirus genus.

Clonorchis sinensis tropomyosin: Cloning and sequence of partial cDNA amplified by PCR (간흡충 tropomyosin: PCR로 일부분 증폭된 cDNA의 cloning 및 염기서열)

  • 홍성종
    • Parasites, Hosts and Diseases
    • /
    • v.31 no.3
    • /
    • pp.285-292
    • /
    • 1993
  • C. sinensis total RMh was containing large amount of 185 rRNA but little 285 rRNA. The size of the double-stranded cDNA synthesized from poly $(A)^{+}$ mRNA was 0.4-4.2 kb long with tapering unto 9.5 kb. Degenerated oligonucleotides (as 2 sense and 3 antisense Primers) were designed on the conserved regions of the known tropomyosin amino acid sequences. From one out of the PCR amplifications using total CDNA and matrix of primers, a specific gene product, 580 bp in size, was produced. Upon Southern hybridization of the PCR products with Schistosomn mnnsoni tropomyosin (SMTM) CDNA, only one signal appeared at the band of 580 bp product. This 580 bp product was considered to encode C. sinensis tropomyosin (CSTM) and cloned in pGEM-3Zf(-) for DNA sequencing. CSTM cDNA was 575 bp containing one open reading frame of 191 predicted amino acids, which revealed 86.3% homology with SMTM and 51.1% with rrichostronsylur coeubnlormis tropomyosin. CSTM cDNA obtained will serve as a probe in the studies of molecular cloning of CSTM.

  • PDF

Effect of Silencing subolesin and enolase impairs gene expression, engorgement and reproduction in Haemaphysalis longicornis (Acari: Ixodidae) ticks

  • Md. Samiul Haque;Mohammad Saiful Islam;Myung-Jo You
    • Journal of Veterinary Science
    • /
    • v.25 no.3
    • /
    • pp.43.1-43.13
    • /
    • 2024
  • Importance: Haemaphysalis longicornis is an obligate blood-sucking ectoparasite that has gained attention due its role of transmitting medically and veterinary significant pathogens and it is the most common tick species in Republic of Korea. The preferred strategy for controlling ticks is a multi-antigenic vaccination. Testing the efficiency of a combination antigen is a promising method for creating a tick vaccine. Objective: The aim of the current research was to analyze the role of subolesin and enolase in feeding and reproduction of H. longicornis by gene silencing. Methods: In this study, we used RNA interference to silence salivary enolase and subolesin in H. longicornis. Unfed female ticks injected with double-stranded RNA targeting subolesin and enolase were attached and fed normally on the rabbit's ear. Real-time polymerase chain reaction was used to confirm the extent of knockdown. Results: Ticks in the subolesin or enolase dsRNA groups showed knockdown rates of 80% and 60% respectively. Ticks in the combination dsRNA (subolesin and enolase) group showed an 80% knockdown. Knockdown of subolesin and enolase resulted in significant depletion in feeding, blood engorgement weight, attachment rate, and egg laying. Silencing of both resulted in a significant (p < 0.05) reduction in tick engorgement, egg laying, egg hatching (15%), and reproduction. Conclusions and Relevance: Our results suggest that subolesin and enolase are an exciting target for future tick control strategies.