• Title/Summary/Keyword: double-shell

Search Result 150, Processing Time 0.025 seconds

Development of 3th Effects Evaporative desalination system for Solar Desalination System (태양에너지 해수담수화를 위한 3중 효용 증발식 담수기 개발)

  • Hwang, In-Seon;Joo, Hong-Jin;Yun, Eung-Sang;Kwak, Hee-Youl
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.201-201
    • /
    • 2010
  • The evaporative desalination system with solar energy would be the efficient and attractive method to get fresh water. This study was described the development of Multi Effect Distillation(MED) with solar energy desalination system. The system was designed and manufactured Multi effect distillation on the capacity of $3m^3$/day. The experimental apparatus consists mainly of ejector pump, Hot water pump, flow meter, demister, cooler, evaporator and condenser. Evaporator and condenser were made Shell&Tube Heat Exchanger type with corrugated tube. The experimental variables were chosen $75^{\circ}C$ for hot water inlet temperature, 40, 60 and $80{\ell}$/min for hot water inlet volume flow rate, 6.0 and $8.0{\ell}$/min for evaporator feed seawater flow rate, $18^{\circ}C$ for sea water inlet temperature to cover the average sea water temperature and the salinity of sea water is measured about 33,000 PPM (parts per million). for a year in Korea. This study was analyzed the results of thermal performance of Multi Effect Distillation. The results are as follows, The experimental Multi effect distillation is required about 40 kW heat source for production of $3m^3$/day fresh water. Various operating flow rate was confirm in the experiments to get the optimum design data and the results showed that the optimum total flow was $8.0{\ell}$/min. Comparison of Single Effect Distillation with Multi Effect Distillation showed MED is at least more than double of SED.

  • PDF

Influence of Different Environmental Conditions on Cocoon Parameters and Their Effects on Reeling Performance of Bivoltine Hybrids of Silkworm, Bombyx mori. L.

  • Gowda B. Nanje;Reddy N. Mal
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.14 no.1
    • /
    • pp.15-21
    • /
    • 2007
  • Three newly authorized bivoltine silkworm hybrids namely, $CSR2{\times}CSR4$ (productive single hybrid), $(CSR6{\times}CSR26){\times}(CSR2{\times}CSR27)$ (productive double hybrid) and $CSR18{\times}CSR19$ (robust single hybrid) were chosen for the present study. These hybrids were subjected to different temperature and humidity treatments i.e., $25{\pm}$1^{\circ}C and RH $65{\pm}5%$ (control), $30{\pm}1^{\circ}C$, with combinations of low relative humidity (RH $65{\pm}5%$) and high RH ($85{\pm}5%$) at different stages during rearing and spinning of silkworm larvae. The larvae of after 3rd moult were subjected to different thermal and humidity stress till the assessment of cocoon traits. The comparative rearing and reeling performance clearly indicated that the deleterious effect of high temperature and high RH was more pronounced for the majority of traits such as cocoon uniformity, cocoon weight, shell weight, shell percentage, reelability, filament length, raw silk percentage raw silk recovery denier and waste percentage on silk weight than other temperature and RH treatments and this effect was almost similar for all three silkworm hybrids studied. The present investigation clearly indicate that the deleterious effect of high temperature and high RH was more pronounced on rearing and spinning of silkworm larvae than other temperature and RH treatments and similar effect was noticed for all the three silkworm hybrids studied. The cocoon characters can be improved by providing ideal environmental conditions even during spinning stage of larvae affected with high temperature and RH. The study also suggest that high temperature and low humidity has greater effect during rearing stage than spinning stage.

Optimum topology design of geometrically nonlinear suspended domes using ECBO

  • Kaveh, A.;Rezaei, M.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.4
    • /
    • pp.667-694
    • /
    • 2015
  • The suspended dome system is a new structural form that has become popular in the construction of long-span roof structures. Suspended dome is a kind of new pre-stressed space grid structure that has complex mechanical characteristics. In this paper, an optimum topology design algorithm is performed using the enhanced colliding bodies optimization (ECBO) method. The length of the strut, the cable initial strain, the cross-sectional area of the cables and the cross-sectional size of steel elements are adopted as design variables and the minimum volume of each dome is taken as the objective function. The topology optimization on lamella dome is performed by considering the type of the joint connections to determine the optimum number of rings, the optimum number of joints in each ring, the optimum height of crown and tubular sections of these domes. A simple procedure is provided to determine the configuration of the dome. This procedure includes calculating the joint coordinates and steel elements and cables constructions. The design constraints are implemented according to the provision of LRFD-AISC (Load and Resistance Factor Design-American Institute of Steel Constitution). This paper explores the efficiency of lamella dome with pin-joint and rigid-joint connections and compares them to investigate the performance of these domes under wind (according to the ASCE 7-05), dead and snow loading conditions. Then, a suspended dome with pin-joint single-layer reticulated shell and a suspended dome with rigid-joint single-layer reticulated shell are discussed. Optimization is performed via ECBO algorithm to demonstrate the effectiveness and robustness of the ECBO in creating optimal design for suspended domes.

Non-Gaussian time-dependent statistics of wind pressure processes on a roof structure

  • Huang, M.F.;Huang, Song;Feng, He;Lou, Wenjuan
    • Wind and Structures
    • /
    • v.23 no.4
    • /
    • pp.275-300
    • /
    • 2016
  • Synchronous multi-pressure measurements were carried out with relatively long time duration for a double-layer reticulated shell roof model in the atmospheric boundary layer wind tunnel. Since the long roof is open at two ends for the storage of coal piles, three different testing cases were considered as the empty roof without coal piles (Case A), half coal piles inside (Case B) and full coal piles inside (Case C). Based on the wind tunnel test results, non-Gaussian time-dependent statistics of net wind pressure on the shell roof were quantified in terms of skewness and kurtosis. It was found that the direct statistical estimation of high-order moments and peak factors is quite sensitive to the duration of wind pressure time-history data. The maximum value of COVs (Coefficients of variations) of high-order moments is up to 1.05 for several measured pressure processes. The Mixture distribution models are proposed for better modeling the distribution of a parent pressure process. With the aid of mixture parent distribution models, the existing translated-peak-process (TPP) method has been revised and improved in the estimation of non-Gaussian peak factors. Finally, non-Gaussian peak factors of wind pressure, particularly for those observed hardening pressure process, were calculated by employing various state-of-the-art methods and compared to the direct statistical analysis of the measured long-duration wind pressure data. The estimated non-Gaussian peak factors for a hardening pressure process at the leading edge of the roof were varying from 3.6229, 3.3693 to 3.3416 corresponding to three different cases of A, B and C.

The Effects of Fed Artificial Diet and Seaweed Diet on Growth and Body Composition of Juvenile Abalone, Haliotis discus hannai by Land-based Tank Immediate Culture Types (육상수조 중간양성 방식별 생사료 및 배합사료 공급이 북방전복, Haliotis discus hannai 치패의 성장과 체성분에 미치는 영향)

  • Kim, Byeong-Hak;Park, Min-Woo;Kim, Tae-Ik;Son, Maeng-Hyun;Lee, Si-Woo
    • The Korean Journal of Malacology
    • /
    • v.31 no.2
    • /
    • pp.73-81
    • /
    • 2015
  • This study was conduct to investigate the effect of intermediate culture types on the growth and survival rate of the juvenile abalone, Haliotis discus hannai fed seaweed and artificial diet. Intermediate cultures were to determine there that was to fed seaweed (SW) of artificial diet (A) of floor culture (FC), net floor culture (NFC), double shelter culture (DSC) and indoor net cage culture (INCC) in land-based tank, in two replicate. In the growth performance of juvenile abalone reared through intermediate culture to fed SW of A, that the absolute growth rate ($AGR_{SL}$, $AGR_{SB}$), daily growth rate ($DGR_{SL}$, $DGR_{SB}$), and specific growth rate ($SGR_{SL}$, $SGR_{SB}$) to the shell length (SL) and shell breadth (SB) of experimental groups were not significant. As weight gain (WG), daily weight gain (DWG) and specific weight gain (SWG) to body weight through intermediate culture types in land-based tank was not significant. However, as to survival rate to experimental groups, A-FC was higher than those of different groups (P < 0.05). Therefore, these results is showed that was not difference to growth of juvenile abalone over 2 cm fed seaweed diet and artificial diet according to intermediate culture types. But floor culture with artificial diet indicate that was highest to survival rate, therefore, it is beneficial for higher productivity in floor culture with artificial diet among intermediate culture types.

Conceptual Design and 3-D electromagnetic analysis of 1MVA HTS Transformer (1MVA 고온 초전도 변압기 개념설계 및 3차원 전자장 해석)

  • Park, Chan-Bae;Kim, Woo-Seok;Hahn, Song-Yap;Choi, Kyeong-Dal;Joo, Hyeong-Gil;Hong, Gye-Won
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.943-945
    • /
    • 2002
  • This paper presents conceptual design and 3-D electromagnetic analysis of 1MVA transformer with BSCCO-2223 High Tc Superconducting (HTS) tapes. The rated voltages of each sides of the transformer are 22.9 kV and 6.6 kV, and double pancake windings were adopted. High voltage and Low voltage sides were composed of several double pancake windings. Four HTS tapes were wound in parallel for the windings of low voltage side and were transposed in order to distribute the currents equally in each conductor. The transformer core was designed as a shell type core made of laminated silicon steel plates and the core is separated with the windings by a cryostat with Fiberglass Reinforced Plastics(FRP). A sub-cooling system using $LN_2$ were designed to maintain the coolant temperature of 65K. Finally perpendicular components of magnetic field applied to tapes were calculated 0.24T in the rated operation using 3-D analysis. A real 1MVA HTS transformer will be manufactured in near future based on the design parameters presented in this paper.

  • PDF

Design of a IMVA Single-Phase HTS Power Transformer

  • Kim, Sung-Hoon;Kim, Woo-Seok;Park, Chan-Bae;Hahn, Song-yop;Park, Kyeong-Dal;Joo, Hyeong-Gil;Hong, Gye-Won
    • Progress in Superconductivity
    • /
    • v.4 no.1
    • /
    • pp.86-89
    • /
    • 2002
  • In this paper, the design of a IMVA single-phase high temperature superconducting(HTS) power transformer with BSCCO-2223 HTS tapes is presented. The rated voltages of each sides of the transformer are 22.9 ㎸ and 6.6 ㎸, respectively The winding of 1MVA HTS transformer is consisted of double pancake type HTS windings, which have advantages of insulation and distribution of high voltage, and are cooled by subcooled liquid nitrogen of 65K. Four HTS tapes were wound in parallel for the windings of low voltage side and the four parallel conductors are transposed. The design of 1MVA HTS transformer, a shell type core made of laminated silicon steel plate is chosen, and the core is separated with the windings by a cryostat with a room temperature bore. The cryostat made of non-magnetic and non-conducting material and a liquid nitrogen sub-cooling system is designed in order to maintain the coolant's temperature of 65K. For electromagnetic analysis of 1MVA HTS transformer, a finite element method of an axis of symmetry is used. The maximum perpendicular component of magnetic flux density of pancake windings is about 0.15T. And through analyzing the magnetic field distribution, an optimal winding arrangement of 1MVA HTS transformer is obtained.

  • PDF

Development of a Dynamic Model for Double-Effect LiBr-$H_2O$ Absorption Chillers and Comparison with Experimental Data. (이중효용 흡수식 냉온수기 동특성 모델 개발 및 실험결과 비교)

  • Shin, Young-gi;Seo, Jung-A;Cho, Hyun-Wook;Nam, Sang-Chul;Jeong, Jin-Hee
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.109-114
    • /
    • 2008
  • A dynamic model has been developed to simulate dynamic operation of a real double-effect absorption chiller. Dynamic behavior of working fluids in main components was modeled in first-order nonlinear differential equations based on heat and mass balances. Mass transport mechanisms among the main components were modeled by valve throttling, 'U' tube overflow and solution sub-cooling. The nonlinear dynamic equations coupled with the subroutines to calculate thermodynamic properties of working fluids were solved by a numerical method. The dynamic performance of the model was compared with the test data of a commercial medium chiller. The model showed a good agreement with the test data except for the first 5,000 seconds during which different flow rates of the weak solution caused some discrepancy. It was found that the chiller dynamics is governed by the inlet temperatures of the cooling water and the chilled water when the heat input to the chiller is relatively constant.

  • PDF

Development of a Dynamic Model for Double-Effect LiBr-$H_{2}O$ Absorption Chillers and Comparison with Experimental Data (이중효용 흡수식 냉온수기 동특성 모델 개발 및 실험결과 비교)

  • Shin, Young-Gy;Seo, Jung-A;Cho, Hyun-Wook;Nam, Sang-Chul;Jeong, Jin-Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.12
    • /
    • pp.781-788
    • /
    • 2008
  • A dynamic model has been developed to simulate dynamic operation of a real double-effect absorption chiller. Dynamic behavior of working fluids in main components was modeled in first-order nonlinear differential equations based on heat and mass balances. Mass transport mechanisms among the main components were modeled by valve throttling, 'U' tube overflow and solution sub-cooling. The nonlinear dynamic equations coupled with the subroutines to calculate thermodynamic properties of working fluids were solved by a numerical method. The dynamic performance of the model was compared with the test data of a commercial medium chiller. The model showed a good agreement with the test data except for the first 5,000 seconds during which different flow rates of the weak solution caused some discrepancy. It was found that the chiller dynamics is governed by the inlet temperatures of the cooling water and the chilled water when the heat input to the chiller is relatively constant.

PLGA particles and half-shells prepared by double emulsion method: characterization and release profiles of ranitidine (이중 유제 방법으로 제조된 PLGA 미립자들과 반구체:특성과 라니티딘(ranitidine)의 방출 양상)

  • Nam, Dae-Sik;Kim, Seong-Cheol;Kang, Soo-Yong;Odonchimeg, Munkhjargal;Shim, Young-Key;Lee, Woo-Kyoung
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.2
    • /
    • pp.99-104
    • /
    • 2008
  • PLGA micro/nano particles encapsulating ranitidine as a hydrophilic model drug were prepared by the double-emulsion solvent evaporation method. Surface morphology investigation by scanning electron microscope (SEM) showed that the emulsification by sonication could produce nanoparticles, whereas microparticles were prepared using high speed homogenizer. Moreover, while nanohalf-shell structure instead of spherical nanoparticle could be produced by adding poloxamer into oil phase (MC) with PLGA 504H, the addition of poloxamer didn't change particle shape in case of PLGA 502H. On the other hand, microparticle with poloxamer had more surface pores than those without poloxamer. The size and polydispersity (PDI) of particles were determined by particle size analyzer. Effective diameters of particles were in the range of $400{\sim}800\;nm$ and $1200{\sim}3300\;nm$ in case of nanoparticles and microparticles, respectively. Encapsulation efficiencies were in the range of $1.2{\sim}2.9%$. The addition of poloxamer produced the particles with higher encapsulation efficiency. In vitro release study in phosphate buffer (pH 7.4) at $37^{\circ}C$ showed common large initial burst release. However, the relative slower release profile could be observed in case of microparticles. Poloxamer addition increased the release rate, which was thought to be related to the increased surface area of particles.