• Title/Summary/Keyword: double-frame

Search Result 247, Processing Time 0.028 seconds

A Multiple Branching Algorithm of Contour Triangulation by Cascading Double Branching Method (이중분기 확장을 통한 등치선 삼각화의 다중분기 알고리즘)

  • Choi, Young-Kyu
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.2
    • /
    • pp.123-134
    • /
    • 2000
  • This paper addresses a new triangulation method for constructing surface model from a set of wire-frame contours. The most important problem of contour triangulation is the branching problem, and we provide a new solution for the double branching problem, which occurs frequently in real data. The multiple branching problem is treated as a set of double branchings and an algorithm based on contour merging is developed. Our double branching algorithm is based on partitioning of root contour by Toussiant's polygon triangulation algorithml[14]. Our double branching algorithm produces quite natural surface model even if the branch contours are very complicate in shape. We treat the multiple branching problem as a problem of coarse section sampling in z-direction, and provide a new multiple branching algorithm which iteratively merge a pair of branch contours using imaginary interpolating contours. Our method is a natural and systematic solution for the general branching problem of contour triangulation. The result shows that our method works well even though there are many complicated branches in the object.

  • PDF

Voltage Control Scheme in Synchronous Reference Frame for Improving Dynamic Characteristics in Parallel Operation of Double-Conversion UPSs (이중 변환 UPS 병렬 운전의 제어 동특성 향상을 위한 동기 좌표계 전압 제어기 구조)

  • Mo, Jae-Sing;Yoon, Young-Doo;Ryu, Hyo-Jun;Lee, Min-Sung;Choi, Seung-Cheul;Kim, Sung-Min;Kim, Seok-Min;Kang, Ho-Hyun;Kim, Hee-Jung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.4
    • /
    • pp.283-290
    • /
    • 2022
  • This study proposes a voltage control scheme in a synchronous reference frame to improve the dynamic characteristics of double-conversion UPSs. UPSs need to control positive and negative sequence voltage, so that positive and negative sequence extractors are generally used to obtain each sequence of the voltage and current. Voltage and current controllers for each sequence are implemented. However, the extractor causes considerable delay, and the delay restricts the control performance, especially for the current controller. To improve the dynamics of the current controller, the proposed scheme adopts a unified current controller without separating positive and negative sequences. By using discrete-time current controller, the control bandwidth can be extended significantly so that negative sequence current can be controlled. To enhance the performance, an additional feed-forward technique for output voltage regulation is proposed. The validity of the proposed controller is verified by experiments.

Numerical analysis of solar heat gain on slim-type double-skin window systems - Heat transfer phenomena with opening of windows and vent slot in summer condition - (전산유체 해석을 통한 슬림형 이중외피 창호의 태양열 취득량 분석 - 높은 태양고도 및 하절기 냉방조건에서의 자연환기구 적용 및 창문 조절 방식별 비교 -)

  • Park, Ji-Ho;Oh, Eun-Joo;Cho, Dong-Woo;Cho, Kyung-Joo;Yu, Jung-Yeon
    • KIEAE Journal
    • /
    • v.17 no.1
    • /
    • pp.69-75
    • /
    • 2017
  • Purpose: Heat transfer analysis of recently developed 'slim type double-skin system window' were presented. This window system is designed for curtain wall type façade that main energy loss factor of recent elegant buildings. And the double skin system is the dual window system integrated with inner shading component, enclosed gap space made by two windows when both windows were closed and shading component effectively reflect and terminate solar radiation from outdoor. Usually double-skin system requires much more space than normal window systems but this development has limited by 270mm, facilitated for curtain wall façade buildings. In this study, we estimated thermophysical phenomena of our double-skin curtain wall system window with solar load conditions at the summer season. Method: A fully 3-Dimentional analysis adopted for flow and convective and radiative heat transfer. The commercial CFD package were used to model the surface to surface radiation for opaque solid region of windows' frame, transparent glass, fluid region at inside of double-skin and indoor/outdoor environments. Result: Steep angle of solar incident occur at solar summer conditions. And this steep solar ray cause direct heat absorption from outside of frame surface rather than transmitted through the glass. Moreover, reflection effect of shading unit inside at the double-skin window system was nearly disappeared because of solar incident angle. With this circumstances, double-skin window system effectively cuts the heat transfer from outdoor to indoor due to separation of air space between outdoor and indoor with inner space of double-skin window system.

Intra-and Inter-frame Features for Automatic Speech Recognition

  • Lee, Sung Joo;Kang, Byung Ok;Chung, Hoon;Lee, Yunkeun
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.514-517
    • /
    • 2014
  • In this paper, alternative dynamic features for speech recognition are proposed. The goal of this work is to improve speech recognition accuracy by deriving the representation of distinctive dynamic characteristics from a speech spectrum. This work was inspired by two temporal dynamics of a speech signal. One is the highly non-stationary nature of speech, and the other is the inter-frame change of a speech spectrum. We adopt the use of a sub-frame spectrum analyzer to capture very rapid spectral changes within a speech analysis frame. In addition, we attempt to measure spectral fluctuations of a more complex manner as opposed to traditional dynamic features such as delta or double-delta. To evaluate the proposed features, speech recognition tests over smartphone environments were conducted. The experimental results show that the feature streams simply combined with the proposed features are effective for an improvement in the recognition accuracy of a hidden Markov model-based speech recognizer.

Torsional Behaviors of Prestressed Double T-Beam (프리스트레스트 Double T-Beam의 비틀림 거동)

  • Sung, Won-Jin;Lee, Yong-Hak
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.315-318
    • /
    • 2005
  • Vlasov's hypothesis provides a way to solve the torsional problem with warping torsion of double T-beam section. Not only the warping torsion of the gross section of double T-beam but the torsional resistances of PS tendons and reinforcements have to be considered together in the analysis in which the latter is the restoring roles provided by the upward and downward force components in a geometrical symmetric configuration. It means that the torsional resistances of PS tendons and reinforcements, usually ignored, store the strain energies due to up-downward geometrical changes. Space frame element with 7-degrees of freedom are used for the finite element approximation of the real behaviors. Bimoments and angles of twist obtained from the proposed method show good agreements with those of 3-D. finite element analysis and analytical analysis

  • PDF

Wavelet-Based Moving Object Segmentation Using Double Change Detection and Background Registration Technique (Double change detection과 배경 구축 기법을 이용한 웨이블릿 기반의 움직이는 객체 분할)

  • Im, Tae-Hyung;Eom, Il-Kyu;Kim, Yoo-Shin
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.221-222
    • /
    • 2007
  • This paper presents wavelet-based moving object segmentation using double change detection and background registration. Three successive frame differences for detection change were used in the wavelet domain. The background was constructed with the wavelet coefficients in the lowest frequency subband which are the approximated version of an image. Combining double change detection and background registration, we can obtain an efficient moving object segmentation algorithm.

  • PDF

Effect of dimensionless nonlocal parameter: Vibration of double-walled CNTs

  • Hussain, Muzamal;Asghar, Sehar;Khadimallah, Mohamed Amine;Ayed, Hamdi;Alghamdi, Sami;Bhutto, Javed Khan;Mahmoud, S.R.;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.30 no.4
    • /
    • pp.269-276
    • /
    • 2022
  • In this paper, frequency vibrations of double-walled carbon nanotubes (CNTs) has been investigated based upon nonlocal elastic theory. The inference of small scale is being perceived by establishing nonlocal Love shell model. The wave propagation approach has been operated to frame the governing equations as eigen value system. An innovational nonlocal model to examine the scale effect on vibrational behavior of armchair, zigzag and chiral of double-walled CNTs. An appropriate selection of material properties and nonlocal parameter has been considered. The influence of dimensionless nonlocal parameter has been studied in detail. The dominance of end condition via nonlocal parameter is explained graphically. The results generated furnish the evidence regarding applicability of nonlocal shell model and also verified by earlier published literature.

Hybrid-type stretchable interconnects with double-layered liquid metal-on-polyimide serpentine structure

  • Yim, Doo Ri;Park, Chan Woo
    • ETRI Journal
    • /
    • v.44 no.1
    • /
    • pp.147-154
    • /
    • 2022
  • We demonstrate a new double-layer structure for stretchable interconnects, where the top surface of a serpentine polyimide support is coated with a thin eutectic gallium-indium liquid metal layer. Because the liquid metal layer is constantly fixed on the solid serpentine body in this liquid-on-solid structure, the overall stretching is accomplished by widening the solid frame itself, with little variation in the total length and cross-sectional area of the current path. Therefore, we can achieve both invariant resistance and infinite fatigue life by combining the stretchable configuration of the underlying body with the freely deformable nature of the top liquid conductor. Further, we fabricated various types of double-layer interconnects as narrow as 10 ㎛ using the roll-painting and lift-off patterning technique based on conventional photolithography and quantitatively validated their beneficial properties. The new interconnecting structure is expected to be widely used in applications requiring high-performance and high-density stretchable circuits owing to its superior reliability and capability to be monolithically integrated with thin-film devices.

A Study on Axial Collapse Characteristics of Spot Welded Double-Hat Shaped Section Members by FEM (FEM에 의한 점용접된 이중모자형 단면부재의 축방향 압궤특성에 관한 연구)

  • Cha, Cheon-Seok;Kim, Young-Nam;Yang, In-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.120-126
    • /
    • 2001
  • The widely used spot welded section members of vehicles are structures which absorb most of the energy in a front-end collision. In front-end collision, sufficiently absorbed in the front parts, the impact energy does not reach the passengers. Simultaneously, the frame gets less damaged. This structures have to be very stiff, but collapse progressively to absorb the kinetic energy as expected. In the view of stiffness, the double-hat shaped section member is stiffer than the hat shaped section member. In progress of collapse, the hat shaped section member is collapsing progressively, but the double-hat shaped section member does not due to stiffness. An analysis on the hat shaped section member was previously completed. This paper concerns the collapse characteristic of the double-hat shaped section member. In the program system presented in this study, an explicit finite element code, LS-DYNA3D is adopted for simulating complicate collapse behavior of double hat shaped section members with respect to spot weld pitches. And comparing with the results from the quasi-static and impact experiment, the simulation has been verified.

  • PDF

Evaluation of seismic criteria of built-up special concentrically braced frames

  • Izadi, Amin;Aghakouchak, Ali A.
    • Steel and Composite Structures
    • /
    • v.29 no.1
    • /
    • pp.23-37
    • /
    • 2018
  • In this paper, seismic provisions related to built-up special concentrically braced frames (BSCBFs) are investigated under cyclic loading using non-linear finite element analysis of a single-bay single-story frame. These braces, which contain double angle and double channel brace sections, are considered in two types of single diagonal and X-braced frames. The results of this study show that current seismic provisions such as observing the 0.4 ratio for slenderness ratio of individual elements between stitch connectors are conservative in BSCBFs, and can be increased according to the type of braces. Furthermore, such increments will lead to decreasing or remaining the current middle protected zone requirements of each BSCBFs. Failure results of BSCBFs, which are related to the plastic equivalent strain growth of members and ductility capacity of the models, show that the behaviors of double channel back-to-back diagonal braces are more desirable than those of similar face-to-face ones. Also, for double angle diagonal braces, results show that the failure of back-to-back BSCBFs occurs faster in comparison with face-to-face similar braces. In X-braced frames, cyclic and failure behaviors of built-up face-to-face models are more desirable than similar back-to-back braces in general.