• Title/Summary/Keyword: double-exchange model

Search Result 21, Processing Time 0.022 seconds

Study on Designing and Installation Effect of Fresh Air Load Reduction System by using Underground Double Floor Space - Proposal of Numerical Model coupled Heat and Moisture Simultaneous Transfer in Hygroscopic - (지열을 이용한 공조외기부하저감(空調外氣負荷低減) 시스템의 설계 및 도입 효과에 관한 연구 - 증기 확산지배에 의한 열수분 동시 이동 수치모델의 제안 -)

  • Son, Won-tug;Choi, Young-sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.4
    • /
    • pp.331-340
    • /
    • 2004
  • This paper presents a feasibility study of a fresh air load reduction system by using an underground double floor space. The fresh air is introduced into the double slab space and passes through the opening bored into the footing beam. The air is cooled by the heat exchange with the inside surface of the double slab space in summer, and heated in winter. This system not only reduces sensible heat load of the fresh air by heat exchange with earth but also reduces latent heat load of the fresh air by ad/de-sorption of underground double slab concrete. In this paper, we used a model for evaluation of fresh air latent heat load reduction by hygroscopic of air to earth exchange system taking into account coupled heat and moisture transfer of underground double floor space. In conclusion it shows the validity of the proposed method for a design tool and the quantitative effect of the system.

  • PDF

The Role of Vehicle Currency in ASEAN-EU Trade: A Double-Aggregation Method

  • BAO, Ho Hoang Gia;LE, Hoang Phong
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.5
    • /
    • pp.43-52
    • /
    • 2021
  • This study is the first to scrutinize how real effective exchange rate, together with the vehicle currency exchange rate, asymmetrically influences the total trade balance between ASEAN (Association of Southeast Asian Nations) and the EU (European Union). This research employs quarterly data between 2000Q1 and 2018Q1, which is derived from several sources. We introduce a method for constructing the double-aggregated real effective exchange rate between ASEAN and the EU that captures the roles of all their currencies. Moreover, we propose the formula to compute vehicle currency exchange rate to assess the importance of vehicle currency in ASEAN-EU trade. Additionally, as asymmetrical impacts of exchange rate on trade balance are well documented by current studies, we employ Nonlinear Autoregressive Distributed Lag (NARDL) model of Shin et al. (2014) to analyze the impacts of currency depreciation as well as appreciation in detail. The findings confirm the prominence of USD as vehicle currency in ASEAN-EU trade. Both depreciation and appreciation of ASEAN's currencies against USD can foster ASEAN's trade balance in the long run. Short-run asymmetrical impacts as well as J-curve effect are found in the vehicle currency models only. The results are robust for the cases of EU-28 and EU-27.

A Study on the Simplified Presumption Method for the Prediction of Cooling and Heating Performance in a Fresh Air Load Reduction System by Using Geothermal Energy (지열 이용 외기부하 저감시스템의 냉각 및 가열효과 예측 간이추정법에 관한 연구)

  • Son, Won-Tug;Choi, Young-Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.13 no.3
    • /
    • pp.169-181
    • /
    • 2010
  • This paper presents a feasibility study of a fresh air load reduction system by using an underground double floor space. The fresh air is introduced into the double slab space and passes through the opening bored into the footing beam. The air is cooled by the heat exchange with the inside surface of the double slab space in summer, and heated in winter. This system not only reduces sensible heat load of the fresh air by heat exchange with earth but also reduces latent heat load of the fresh air by ad/de-sorption of underground double slab concrete. In this paper, we proposed a simplified presumption method for the prediction of cooling and heating performance in the system. In conclusion the proposed method has been verified by comparing with the calculated value of the numerical analysis model by using nonlinear two-dimension hygroscopic question.

  • PDF

Study on Fresh Air Load Reduction System by Using Geothermal Energy - Effect on Thermal Characteristic arid Air Pattern of System by Opening Configuration - (지열을 이용한 공조외기부하저감 시스템에 관한 연구 -지하피트 공간 내의 개구부 형상이 시스템의 열적 특성 및 기류성상에 미치는 영향-)

  • Son Won-Tug;Lee Sung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.11
    • /
    • pp.1092-1100
    • /
    • 2004
  • This paper presents the effect of opening configuration on the thermal behavior and air pattern of earth tube system. The earth tube system is a fresh air load reduction system by using underground double floor space for air-conditioning. In order to analyze the effect of opening configuration on thermal performance of this system and air pattern in underground double floor space quantitatively, we used a model dealing with tree-dimensional profile of wind velocity and temperature in underground double floor space. In conclusion, it is confirmed that heat exchange of a fresh air is mainly performed with upper and lower wall in underground double floor space, and that heat exchange area increased by installing the opening near the wall.

A Study on the Simplified Presumption Method for the Prediction of Cooling and Heating Performance in a Fresh Air Load Reduction System by Using Geothermal Energy (지열을 이용한 외기부하저감시스템의 냉각 및 가열효과 예측을 위한 간이추정법에 관한 연구)

  • Son, Won-Tug;Park, Kyung-Soon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.9
    • /
    • pp.628-634
    • /
    • 2010
  • This paper presents a feasibility study of a fresh air load reduction system by using an underground double floor space. The fresh air is introduced into the double slab space and passes through the opening bored into the footing beam. The air is cooled by the heat exchange with the inside surface of the double slab space in summer, and heated in winter. This system not only reduces sensible heat load of the fresh air by heat exchange with earth but also reduces latent heat load of the fresh air by ad/de-sorption of underground double slab concrete. In this paper, we proposed a simplified presumption method for the prediction of cooling and heating performance in the system. In conclusion the proposed method has been verified by comparing with the calculated value of the numerical analysis model by using nonlinear two-dimension hygroscopic question.

Effect of Partial Substitution of Magnetic Rare Earths for La on the Structure, Electric Transport And Magnetic Properties of Oxygen Deficient Phase LaSr2MnCrO7-δ

  • Singh, Devinder;Sharma, Sushma;Mahajan, Arun;Singh, Suram;Singh, Rajinder
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1679-1683
    • /
    • 2013
  • Intergrowth perovskite type complex oxides $La_{0.8}Ln_{0.2}Sr_2MnCrO_{7-{\delta}}$ (Ln=La, Nd, Gd, and Dy) have been synthesized by sol-gel method. Rietveld profile analysis shows that the phases crystallize with tetragonal unit cell in the space group I4/mmm. The unit cell parameters a and c decrease with decreasing effective ionic radius of the lanthanide ion. The magnetic studies suggest that the ferromagnetic interactions are dominant due to $Mn^{3+}$-O-$Mn^{4+}$ and $Mn^{3+}$-O-$Cr^{3+}$ double exchange interactions. Both Weiss constant (${\theta}$) and Curie temperature ($T_C$) increase with decreasing ionic radius of lanthanide ion. It was found that the transport mechanism is dominated by Mott's variable range hopping (VRH) model with an increase of Mott localization energy.

The Effect of the Collision Process Between Molecules on the Rates of Thermal Relaxation of the Translational-Rotational-Vibrational Energy Exchange (분자간 충돌과정에 따른 병진-회전-진동에너지의 이완율)

  • Heo, Joong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.12
    • /
    • pp.1494-1500
    • /
    • 2004
  • A zero-dimensional direct simulation Monte Carlo(DSMC) model is developed for simulating diatomic gas including vibrational kinetics. The method is applied to the simulation of two systems: vibrational relaxation of a simple harmonic oscillator and translational-rotational-vibrational energy exchange process under heating and cooling. In the present DSMC method, the variable hard sphere molecular model and no time counter technique are used to simulate the molecular collision kinetics. For simulation of diatomic gas flows, the Borgnakke-Larsen phenomenological model is adopted to redistribute the translational and internal energies.

Simulation of the performance characteristics of the double effect Parallel flow cycle with secondary heat at the low temperature qenerator (저온재생기2열원2중효용(低溫再生器2熱源2重效用) Parallel Flow Cycle의 특성(特性) 해석(解析))

  • Choi, K.K.;Rie, D.H.
    • Solar Energy
    • /
    • v.17 no.3
    • /
    • pp.43-49
    • /
    • 1997
  • Cycle simulaton of the double effect parallel flow model is applied to a Lithium-Bromide/water system, with the objective of evaluation the possibilities of effectively utilizing waste-heat as a secondary heat source for the low-temperature generator. In this study, cycle simulation has been carried out to clarify the effect heat exchange in order to predict the performance of absorption refrigeration cycles using waste heat.

  • PDF

Characterization of the Purified Ca-type Bentonil-WRK Montmorillonite and Its Sorption Thermodynamics With Cs(I) and Sr(II)

  • Seonggyu Choi;Bong-Ju Kim;Surin Seo;Jae-Kwang Lee;Jang-Soon Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.4
    • /
    • pp.427-438
    • /
    • 2023
  • Thermodynamic sorption modeling can enhance confidence in assessing and demonstrating the radionuclide sorption phenomena onto various mineral adsorbents. In this work, Ca-montmorillonite was successfully purified from Bentonil-WRK bentonite by performing the sequential physical and chemical treatments, and its geochemical properties were characterized using X-ray diffraction, Brunauer-Emmett-Teller analysis, cesium-saturation method, and controlled continuous acid-base titration. Further, batch experiments were conducted to evaluate the adsorption properties of Cs(I) and Sr(II) onto the homoionic Ca-montmorillonite under ambient conditions, and the diffuse double layer model-based inverse analysis of sorption data was performed to establish the relevant surface reaction models and obtain corresponding thermodynamic constants. Two types of surface reactions were identified as responsible for the sorption of Cs(I) and Sr(II) onto Ca-montmorillonite: cation exchange at interlayer site and complexation with edge silanol functionality. The thermodynamic sorption modeling provides acceptable representations of the experimental data, and the species distributions calculated using the resulting reaction constants accounts for the predominance of cation exchange mechanism of Cs(I) and Sr(II) under the ambient aqueous conditions. The surface complexation of cationic fission products with silanol group slightly facilitates their sorption at pH > 8.

Breakthrough Curves and Miscible Displacement of Cadmium Through Double-Layered Reclaimed Soils Amended with Macroporous Granule

  • Kim, Hye-Jin;Ryu, Jin-Hee;Kim, Si-Ju;Park, Mi-Suk;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.1
    • /
    • pp.15-21
    • /
    • 2011
  • Transport of heavy metals such as Cd is affected by several rate-limiting processes including adsorption and desorption by exchange reactions in soils. In this study, column transport and batch kinetic experiments were performed to assess Cd mobility in a double-layered soil with a reclaimed saline and sodic soil (SSS) as top soil and macroporous granule (MPG) as a bottom layer. For individual soil layer having different physical and chemical properties, Cd was considered to be nonlinear reactivity with the soil matrix in layered soils. The dispersive equation for reactive solutes was solved with three types of boundary conditions for the interface between soil layers. The adsorption of Cd with respect to the saline-sodic sandy loam and the MPG indicated that the nature of the sites or the mechanisms involved in the sorption process of Cd was different and the amounts of Cd for both of samples increases with increasing amounts of equilibrium concentration whereas the amount of Cd adsorbed in saline-sodic sandy loam soil was higher than that in MPG. The results of breakthrough curve indicating relative Cd retardation accompanied by layer material and sequence during leaching showed that the number of pore volumes to reach the maximum relative concentration of 1 increased in the order of MPG, SSS, and double layer of SSS-MPG. Breakthrough curves (BTCs) from column experiments were well predicted with our double-layered model where independently derived solute physical and retention parameters were implemented.