• Title/Summary/Keyword: double-beam

Search Result 529, Processing Time 0.028 seconds

Structural Performance Evaluations of Steel Hysteretic Damper in Series for High-Rise Shear Wall System (고층 전단벽시스템 적용을 위한 직렬 연결형 강재이력댐퍼의 구조성능평가)

  • Oh, Sang-Hoon;Choi, Kwang-Yong;Ryu, Hong-Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.4
    • /
    • pp.371-382
    • /
    • 2012
  • Existing shear wall system may cause ductility fallen to the structure which it is on because relatively weak concrete core would easy to be damaged. In this study, steel hysteresis dampers whose stiffness is higher than existing coupling beam and whose strength is easy to change depending on design load was used in coupling beam. The steel hysteresis damper was proposed for the shape connected in double in series, from this, several static test were conducted to verify structural performance of the damper. FEM analysis was also performed, then design equation were suggested.

A Study on the 'Perpendicular crossing Dori(Purlin)' Structure of the Ddeulzip(Courthouse) in Andong Cultural Area (안동문화권(安東文化圈) 뜰집의 '직교(直交)도리' 구조(構造)에 관한 연구(硏究))

  • Kim, Hwa-Bong
    • Journal of architectural history
    • /
    • v.9 no.2 s.23
    • /
    • pp.7-17
    • /
    • 2000
  • The purpose of this study is the analysis of 'perpendicular crossing Dori' with a structural character of Ddeulzip in Andong cultural area. There are many structural methods to solve the problems of Ddeuljip which is connected space in the rectangular type. There are 'Slope Base', 'Woosangak' roof, 'Seosangak' roof, and '4 beam roof framing' Moreover, they have been used 'perpendicular crossing Dori'. Its characters are as follows ; 1. The 'perpendicular crossing Dori' structure is occurred in different depth of width and length space of 'ㄱ' typed plan. At that time the beam of width is crossed in the middle of the beam of length without the order under them. 2. The 'perpendicular crossing Dori' structure is the method of free depth of width in regular distance of column which is different from general usage of balcony order. 3. The 'perpendicular crossing Dori' structure is founded north-western area of Andong Cultural Area(Bonghwa, Andong, Youngju, and Yeacheun). The best old sample was in Andong(16C) and the next is Yeacheun(17C) and the last is Bonghwa(18C). 4. The frequency in use of roof type of 'perpendicular crossing Dori' structure is 64% of 'Seosangak' and 36% of 'Woosangak'. The sample of 'Woosangak' house of 'perpendicular crossing Dori' structure is concentrated in Bonghwa. 5. The best merit of the 'perpendicular crossing Dori' structure is usage of double swing window in front of Anbang, It is the spacial success which overcomes the structural limits. And it is the structural rationality.

  • PDF

Structural Analysis of Thin-Walled, Multi-Celled Composite Blades with Elliptic Cross-Sections (다중세포로 구성된 박벽 타원형 단면 복합재료 블레이드의 구조해석)

  • 박일주;정성남
    • Composites Research
    • /
    • v.17 no.4
    • /
    • pp.25-31
    • /
    • 2004
  • In this study, a refined beam analysis model has been developed for multi-celled composite blades with elliptic cross-sections. Reissner's semi-complimentary energy functional is introduced to describe the beam theory and also to deal with the mixed-nature of the formulation. The wail of elliptic sections is discretized into finite number of elements along the contour line and Gauss integration is applied to obtain the section properties. For each cell of the section, a total of four continuity conditions are used to impose proper constraints for the section. The theory is applied to single- and double-celled composite blades with elliptic cross-sections and is validated with detailed finite element analysis results.

Effects of Impact Loading Rate on the Delamination Behavior of Composite Laminates (복합적층판의 층간파괴에 미치는 충격하중속도의 효과)

  • Choe, Nak-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.1886-1895
    • /
    • 1999
  • The delamination behavior of multidirectional carbon-fiber/epoxy composite laminates under 10NA intermediate and high rates of test, up to rate of about 11.4m s has been investigated using the double cantilever beam specimens. The mode I loading under rates above l.0m/s showed considerable dynamic effects on the load-time curves and thus higher values of the average crack velocity than that expected from a simple proportional relationship with the test rate. The modified beam analysis utilizing only the opening displacement and crack length exhibited an effective means for evaluating the dynamic fracture energy $G_{IC}$. Based on the assumption of constant flexural modulus, values of $G_{IC}$ at the crack initiation and arrest were decreased with an increase of the test rate up to 5.7m/s, but the maximum $G_{IC}$ was increased at 11.4m/s.

A Plastic BGA Singulation using High Thermal Energy of $2^{nd}$ Harmonic Nd:YAG Laser

  • Lee, Kyoung-Cheol;Baek, Kwang-Yeol;Lee, Cheon
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.2C no.6
    • /
    • pp.309-313
    • /
    • 2002
  • In this paper, we have studied minimization of the kerf-width and surface burning, which occurred after the conventional singulation process of the multi-layer BGA board with copper, polyethylene and epoxy glass fiber. The high thermal energy of a pulsed Nd:YAG laser is used to cut the multi-layer board. The most considerable matter in the laser cutting of the multi-layer BGA boards is their different absorption coefficient to the laser beam and their different heat conductivity. The cut mechanism of a multi-layer BGA board using a 2$^{nd}$ harmonic Nd:YAG laser is the thermal vaporization by high temperature rise based on the Gaussian profile and copper melting point. In this experiment, we found that the sacrifice layer and Na blowing are effective in minimizing the surface burning by the reaction between oxygen in the air and the laser beam. In addition, N2 blowing reduces laser energy loss by debris and suppresses surface oxidation. Also, the beam incidence on the epoxy layer compared to polyimide was much more suitable to reduce damage to polyimide with copper wire for the multi layer BGA singulation. When the polyester double-sided tape is used as a sacrifice layer, surface carbonization becomes less. The SEM, non-contact 3D inspector and high-resolution microscope are used to measure cut line-width and surface morphology.

Effects of α-particle beam irradiation on superconducting properties of thin film MgB2 superconductors

  • Kim, Sangbum;Duong, Pham van;Ha, Donghyup;Oh, Young-Hoon;Kang, Won Nam;Hong, Seung Pyo;Kim, Ranyoung;Chai, Jong Seo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.2
    • /
    • pp.8-13
    • /
    • 2016
  • Superconducting properties of thin film MgB2 superconductors irradiated with 45 MeV ${\alpha}$-particle beam were studied. After the irradiation, enhancement of the critical current density and pinning force was observed, scaling close to strong pinning formula. Double logarithmic plots of the maximum pinning force density with irreversible magnetic field show a power law behavior close to carbon-doped MgB2 film or polycrystals. Variation of normalized pinning force density in the reduced magnetic field suggests scaling formulas for strong pinning mechanism like planar defects. We also observed a rapid decay of critical current density as the vortex lattice constant decreases, due to the strong interaction between vortices and increasing magnetic field.

Planar Hall Effect of GaMnAs Grown via low Temperature Molecular Beam Epitaxy (저온 분자선에피탁시 방법으로 성장시킨 GaMnAs의 planar Hall 효과)

  • Kim, Gyeong-Hyeon;Park, Jong-Hun;Kim, Byeong-Du;Kim, Do-Jin;Kim, Hyo-Jin;Im, Yeong-Eon;Kim, Chang-Su
    • Korean Journal of Materials Research
    • /
    • v.12 no.3
    • /
    • pp.195-199
    • /
    • 2002
  • Planar Hall effect of ferromagnetic GaMnAs thin films was investigated for the first time. The films were grown in an optimized growth condition via molecular beam epitaxy at low temperatures. For the optimization of the growth conditions, we used reflection high-energy electron diffraction, electrical conductivity, double crystal x-ray diffraction, and superconducting quantum interference device measurements techniques. We observed that the difference between the longitudinal resistance and the transverse resistance matches the planar Hall resistance. The ratio of the planar Hall resistance at saturation magnetic field to that at zero reached above 500%.

The effect of beam section property on the behavior of modular prefabricated steel moment connection

  • Kazemi, Seyed Morteza;Sohrabi, Mohammad Reza;Kazemi, Hasan Haji
    • Steel and Composite Structures
    • /
    • v.32 no.6
    • /
    • pp.769-778
    • /
    • 2019
  • The specially prefabricated steel moment connections with pyramid head is one of the significant innovations in the steel structures forms to improve the installation time and simplify the construction procedure. The beams in this structure form are supported by two top and bottom angles and web double angles. Such a configuration despite its advantages increases the welding operation and filed installation time and costs. In this paper, the effect of using beams with channel and I section in three classes of seismically compact, seismically non-compact, and slender section according to width-to-thickness ratio on the behavior of the connection was investigated under monotonic and cyclic loading. Modeling was performed by ABAQUS and verified by the results of an experimental specimen. The findings indicated that using I and channel section instead of angle section reduces the amount of welding materials as well as easing the installation procedure. However, it has no significant effect on the ultimate strength and ductility of the connection. Furthermore, if the beam section is seismically compact, this form is considered as a special moment frame that has a rotation capacity up to 0.04 radians without any reduction in connection moment resistance.

Effect of Electrode Formation Process using E-beam Evaporation on Crystalline Silicon Solar Cell (E-Beam evaporation을 이용한 전극 형성 공정이 결정질 실리콘 태양전지에 미치는 영향 분석)

  • Choi, Dongjin;Park, Se Jin;Shin, Seung Hyun;Lee, Changhyun;Bae, Soohyun;Kang, Yoonmook;Lee, Hae-Seok;Kim, Donghwan
    • Current Photovoltaic Research
    • /
    • v.7 no.1
    • /
    • pp.15-20
    • /
    • 2019
  • Most high-efficiency n-type silicon solar cells are based on the high quality surface passivation and ohmic contact between the emitter and the metal. Currently, various metalization methods such as screen printing using metal paste and physical vapor deposition are being used in forming electrodes of n-type silicon solar cell. In this paper, we analyzed the degradation factors induced by the front electrode formation process using e-beam evaporation of double passivation structure of p-type emitter and $Al_2O_3/SiN_x$ for high efficiency solar cell using n-type bulk silicon. In order to confirm the cause of the degradation, the passivation characteristics of each electrode region were determined through a quasi-steady-state photo-conductance (QSSPC).

Comparison of Parallel and Fan-Beam Monochromatic X-Ray CT Using Synchrotron Radiation

  • Toyofuku, Fukai;Tokumori, Kenji;Kanda, Shigenobu;Ohki, Masafumi;Higashida, Yoshiharu;Hyodo, Kazuyuki;Ando, Masami;Uyama, Chikao
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.407-410
    • /
    • 2002
  • Monochromatic x-ray CT has several advantages over conventional CT, which utilizes bremsstrahlung white x-rays from an x-ray tube. There are several methods to produce such monochromatic x-rays. The most popular one is crystal diffraction monochromatization, which has been commonly used because of the fact that the energy spread is very narrow and the energy can be changed continuously. The alternative method is the use of fluorescent x-ray, which has several advantages such as large beam size and fast energy change. We have developed a parallel-beam and a fan-beam monochromatic x-ray CT, and compared some characteristics such as accuracy of CT numbers between those systems. The fan beam monochromatic x-rays were generated by irradiating target materials by incident white x-rays from a bending magnet beam line NE5 in 6.5 GeV Accumulation Ring at Tukuba. The parallel beam monochromatic x-rays were generated by using a silicon double crystal monochromator at the bending magnet beam line BL-20BM in Spring-8. A Cadmium telluride (CdTe) 256 channel array detector with 512mm sensitive width capable of operating at room temperature was used in the photon counting mode. A cylindrical phantom containing eight concentrations of gadolinium was used for the fan beam monochromatic x-ray CT system, while a phantom containing acetone, ethanol, acrylic and water was used for the parallel monochromatic x-ray CT system. The linear attenuation coefficients obtained from CT numbers of those monochromatic x-ray CT images were compared with theoretical values. They showed a good agreement within 3%. It was found that the quantitative measurement can be possible by using the fan beam monochromatic x-ray CT system as well as a parallel beam monochromatic X-ray CT system.

  • PDF