• Title/Summary/Keyword: double-Newton method

Search Result 14, Processing Time 0.018 seconds

A Development of Integrity Evaluation System Based on Elastic Plastic Fracture Mechanics(I) - Specimen Cases - (탄소성 파괴역학적 건전성 평가 시스템의 개발 I)

  • 김영진;최재붕;손상환;이주진;허용학
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.646-655
    • /
    • 1990
  • A practically useful system for elastic-plastic fracture mechanics analysis has been developed. The developed system is comprised of the deformation plasticity failure assessment diagram(DPFAD) approach and the J-integral/Tearing modulus(J/T) approach. The system contains analysis routines for five types of fracture specimens : compact tension, center cracked tension, single edge craked plate in uniform tension, single edge cracked plate in three point bending and double edge cracked plate in tension. A double interpolation scheme was adopted to interpolate J values from the EPRI developed EPFM handbook and the Newton-Raphson method was used to obtain proper loadings for displacement control conditions. A graphic output system was utilized to present numerical results. Several case studies were performed to evaluate the accuracy and the usefulness of the code. It was found that the J/T approach and the DPFAD approach yielded similar results. However, the DPFAD approach is more convenient for qick assessment of integrity of cracked structures while the J/T approach is more useful in evaluating the full history of the fracture process.

Form Finding of a Single-layered Pneumatic Membrane Structures by Using Nonlinear Force Method (비선형 내력법을 이용한 단일 공기막의 형상 탐색)

  • Shon, Sudeok;Ha, Junhong;Lee, Seungjae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.21 no.4
    • /
    • pp.49-56
    • /
    • 2021
  • This study aims to develop a form-finding algorithm for a single-layered pneumatic membrane. The initial shape of this pneumatic membrane, which is an air-supported type pneumatic membrane, is to find a state in which a given initial tension and internal pneumatic pressure are in equilibrium. The algorithm developed to satisfy these conditions is that a nonlinear optimization problem based on the force method considering the deformed shape is formulated, and, it's able to find the shape by iteratively repeating the process of obtaining a solution of the governing equations. An computational technique based on the Gauss-Newton method was used as a method for obtaining solutions of nonlinear equations. In order to verify the validity of the proposed form-finding algorithm, a single-curvature pneumatic membrane example and a double-curvature air pneumatic membrane example were adopted, respectively. In the results of these examples, it was possible to well observe the step-by-step convergence process of the shape of the pneumatic membrane, and it was also possible to confirm the change in shape according to the air pressure. In addition, the calculation results of the shape and internal force after deformation due to initial tension, air pressure, and self-weight were obtained.

Statistical Characteristics of the Non-tidal Components Data in Korean Coasts (한반도 연안 비조석 성분자료의 통계적 특성)

  • Cho, Hong-Yeon;Jeong, Shin-Taek;Yoon, Jong-Tae;Kim, Chang-Il
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.2
    • /
    • pp.112-123
    • /
    • 2006
  • Double-peak normal distribution function was suggested as the probability density function of the non-tidal components (NTC) data in Korean coastal zone. Frequency distribution analysis of the NTC data was carried out using hourly tidal elevation data of the ten tidal gauging stations, i.e., Incheon, Gunsan, Mokpo, Jeju, Yeosu, Masan, Gadeokdo, Busan, Pohang, and Sokcho which were served through the Internet Homepage by the National Ocean Research Institute. NTC data is defined as the difference between the measured tidal elevation data and the astronomical tidal elevation data using 64 tidal constituents information. Based on the RMS error and R2 value comparison analysis, it was found that this suggested function as the probability density function of the NTC data was found to be more appropriate than the normal distribution function. The parameters of the double-peak function were estimated optimally using Levenberg-Marquardt method which was modified from the Newton method. The standard deviation and skewness coefficient were highly correlated with the non-tidal constants of the tidal gauging stations except Mokpo, Jeju and Sokcho stations.

Unsteady Flow Model Including a Dam Operation Rule for Flood Control as Internal Boundary Condition (홍수시 댐 운영방안을 내부 경계조건으로 포함하는 부정류 계산모형)

  • Yu, Myoung-Kwan;Jun, Kyung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.12
    • /
    • pp.1043-1054
    • /
    • 2004
  • An unsteady flow model for channel network including various internal boundaries if developed. It is a multiply-connected network model based on the Preissmann's four-point scheme and the Newton-Raphson method, where looped double-sweep algorithm is used. The model is capable of simulating flow through hydraulic structures such as dams and submerged weirs. It can also simulate automatic reservoir operation method (Auto ROM) for flood control, that is to maintain a target water level, by incorporating the strategy to the unsteady flow model as internal boundary condition. The model is applied to the Han River system that includes the downstream reaches of Choongju dam and Hwacheon dam as well as the downstream reach of the Paldang dam. Roughness coefficient for the downstream reach of Choongju dam is estimated. Automatic ROM is presumed for the Paldang, Chungpyung, Euiam, and Choonchun dams. The model is tested using historical flood records, and the flood control strategy is successfully simulated.