• Title/Summary/Keyword: double porosity

Search Result 59, Processing Time 0.028 seconds

Prediction of the Sound Absorption Coefficient for Multiple Perforated-Plate Sound Absorbing System by Transfer Matrix Method (전달행렬법에 의한 다중 다공판 흡음시스템의 흡음계수 예측)

  • 허성춘;이동훈;권영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.653-658
    • /
    • 2001
  • In this study, a new practical method of predicting the sound absorption coefficient for multiple perforated-plate sound absorbing system was developed using transfer matrix method. In order to validate the proposed method, the absorption coefficients calculated by transfer matrix method for single perforated plate were first compared with the absorption coefficients measured by SWR method according to different porosity, hole diameter, and thickness of the perforated plate. Based on the comparison results, transfer matrix method was further applied to double and triple perforated plates to evaluate the absorption coefficients. The experimental results showed that the absorption coefficients from transfer matrix method generally agreed well with the corresponding absorption coefficients from SWR method. However, due to the limitations of the impedance model used in this study, the measured values were differed with the calculated values for small porosity, hole diameter, and thickness in size of the perforated plate indicating the need of impedance model development for multiple perforated-plate sound absorbing system covering wide ranges of porosity, hole diameter, and thickness of the perforated plate.

  • PDF

Fabrication of Double-layered Porous Materials (이중 기공구조를 갖는 다공질체의 제조)

  • Yun, Jung-Yeul;Kim, Hai-Doo;Park, Chun-Hong
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.10
    • /
    • pp.919-927
    • /
    • 2002
  • In order to fabricate double-layered porous materials powders of different particle sizes were pressed stepwise. Ford's equation which predicts the fired density with the change in pressed density was employed in order to adjust the difference in sintering shrinkage of the green body with double-layered porous structure. Double-layered porous materials were characterized by investigating microstructures and permeability. SEM micrographs showed the distinct difference in pore sizes of double-layered porous material. Permeability of single-layered porous material increased by increasing the starting particle sizes and porosity as well. Permeability of the double-layered porous material depends largely on the layer of small pore diameter.

THE EFFECT OF SPRUE DESIGN ON THE INTERNAL POROSITY OF TITANIUM CASTINGS (주입선 설계가 티타늄 주조체의 내부기포 발생에 미치는 영향)

  • Heo Sook-Myeong;Jeon Young-Chan;Jeong Chang-Mo;Lim Jang-Seop;Jeong Hee-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.2
    • /
    • pp.147-156
    • /
    • 2006
  • Statement of problem: The high melting temperature and chemical reactivity of titanium necessitates casting machines different from those used in conventional casting. Despite the new developments in Ti casting systems , inadequate mold filling and internal porosity are frequently observed casting defects. Therefore, the study on the fabrication technique including sprue design to solve these casting defects is still necessary. Purpose: The purpose of this study was to evaluate the effect of sprue design and cross sectional area of sprue on the internal porosity. Materials and methods: 30 simulated cast three units titanium crowns were prepared. 5 cast crowns for each with different sprue design(sinlge sprue, double sprue and plate sprue) of two cross sectional areas (small and large cross sectional areas) were fabricated. The sections of titanium castings were photographed in a microscope at ${\times}100$ magnification to record internal porosities. Results and Conclusion: Within the limits of this study, the following conclusions were drawn: 1. There was a significantly lower in internal porosity of titanium castings for large cross sectional area of sprue group than the small group (P<.05) 2. There was no significant difference in internal porosity among sprue designs in similar cross sectional area of sprue (P>.05).

Fabrication and Pore Properties of SUS316L Membrane with Double-Layered Pore Structures by Wet Powder Spraying

  • Min-Jeong Lee;Hyeon-Ju Kim;Manho Park;Jung-Yeul Yun
    • Archives of Metallurgy and Materials
    • /
    • v.67 no.4
    • /
    • pp.1531-1534
    • /
    • 2022
  • In this study, a SUS316L membrane having double layered pore structures was fabricated, and the pore characteristics were analyzed after coating with a spherical powder and a flake-shaped powder on a disk-shaped SUS316L support using a wet powder spraying process. The thickness of the coated layer was checked using an optical microscope, and air permeability was measured using a capillary flow porometer. When the coating amount was similar, the fine porous layer prepared using flake powder was thicker and showed higher porosity. In the case of a similar thickness, the case of using flake powder was half of the amount of spherical powder used. Therefore, it was confirmed that it is possible to manufacture a metal membrane having a high filter efficiency even with a small coating amount when using the flake powder.

THE EFFECT OF SPRUE DESIGN ON THE MARGINAL REPRODUCIBILITY OF CAST TITANIUM CROWNS (주입선 형태가 티타늄 주조관의 변연재현성에 미치는 영향)

  • Park Jae-Kyoung;Jeong Chang-Mo;Jeon Young-Chan
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.4
    • /
    • pp.352-364
    • /
    • 2002
  • There has been a great interest in the use of titanium for fixed and removable prostheses in recent because of its excellent biocompatibility. However the high melting temperature and chemical reactivity of titanium necessitates casting systems different from those used in conventional casting. The current titanium casting systems are based on an electric-arc design for melting the metal in an argon atmosphere and its exclusive investment. Despite the new developments in Ti casting systems, inadequate mold filling and internal porosity are frequently observed casting defects. Therefore, the study on the fabrication technique including sprue design to solve these casting defects is still necessary. In this study to evaluate the effect of sprue design on the castability of simulated cast titanium crowns, 10 cylindrical cast crowns for each group with four different sprue design(Single group. Double group, Runner bar group. Reservoir group) were fabricated. An impression of the entire casting margin was made and cut at $90^{\circ}$ intervals, and the sections were photographed in a microscope at $100{\times}$ magnification to record marginal discrepancy. The internal porosities of the cast crowns were disclosed by radiographs. Within the limits of this study. the following conclusions were drawn. 1. The overall mean marginal discrepancies for each group were as follows: Double group, $43.65{\mu}m$; Reservoir group, $50.27{\mu}m$; Single group, $54.17{\mu}m$; Runner bar group, $58.90{\mu}m$ (p<0.05). 2. The mean of marginal discrepancies for wax patterns was $10.65{\mu}m$. 3 The numbers of internal porosity showed the most in Runner bar group followed by Single group, Reservoir group, and Double group.

Pharmaceutical Potential of Gelatin as a pH-responsive Porogen for Manufacturing Porous Poly(d,l-lactic-co-glycolic acid) Microspheres

  • Kim, Hyun-Uk;Park, Hong-Il;Lee, Ju-Ho;Lee, Eun-Seong;Oh, Kyung-Taek;Yoon, Jeong-Hyun;Park, Eun-Seok;Lee, Kang-Choon;Youn, Yu-Seok
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.4
    • /
    • pp.245-250
    • /
    • 2010
  • Porous poly(lactic-co-glycolic acid) microspheres (PLGA MS) have been utilized as an inhalation delivery system and a matrix scaffold system for tissue engineering. Here, gelatin (type A) is introduced as an extractable pH-responsive porogen, which is capable of controlling the porosity and pore size of PLGA microspheres. Porous PLGA microspheres were prepared by a water-in-oil-in-water ($w_1/o/w_2$) double emulsification/solvent evaporation method. The surface morphology of these microspheres was examined by varying pH (2.0~11.0) of water phases, using scanning electron microscopy (SEM). Also, their porosity and pore size were monitored by altering acidification time (1~5 h) using a phosphoric acid solution. Results showed that the pore-forming capability of gelatin was optimized at pH 5.0, and that the surface pore-formation was not significantly observed at pHs of < 4.0 or > 8.0. This was attributable to the balance between gel-formation by electrostatic repulsion and dissolution of gelatin. The appropriate time-selection between PLGA hardening and gelatin-washing out was considered as a second significant factor to control the porosity. Delaying the acidification time to ~5 h after emulsification was clearly effective to make pores in the microspheres. This finding suggests that the porosity and pore size of porous microspheres using gelatin can be significantly controlled depending on water phase pH and gelatin-removal time. The results obtained in this study would provide valuable pharmaceutical information to prepare porous PLGA MS, which is required to control the porosity.

Synthesis of Core-Shell Silica Nanoparticles with Hierarchically Bimodal Pore Structures

  • Yun, Seok-Bon;Park, Dae-Geun;Yun, Wan-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.467-467
    • /
    • 2011
  • Reflecting the growing importance of nanomaterials in science and technology, controlling the porosity combined with well-defined structural properties has been an ever-demanding pursuit in the related fields of frontier researches. A number of reports have focused on the synthesis of various nanoporous materials so far and, recently, the nanomaterials with multimodal porosity are getting an emerging importance due to their improved material properties compared with the mono porous materials. However, most of those materials are obtained in bulk phases while the spherical nanoparticles are one of the most practical platforms in a great number of applications. Here, we report on the synthesis of the core-shell silica nanoparticles with double mesoporous shells (DMSs). The DMS nsnoparticles are spherical and monodispersive and have two different mesoporous shells, i.e., the bimodal porosity. It is the first example of the core-shell silica nanoparticles with the different mesopores coexisting in the individual nanoparticles. Furthermore, the carbon and silica hollow capsules were also fabricated via a serial replication process.

  • PDF

Dynamic analysis of viscoelastic FGM shells with porosities on elastic foundation

  • Mehmet Halil Calim;Omer Faruk Capar;Mehmet Bugra Ozbey;Yavuz Cetin Cuma
    • Geomechanics and Engineering
    • /
    • v.39 no.1
    • /
    • pp.55-72
    • /
    • 2024
  • This study investigates free and damped vibration behaviours of porous functionally graded shells supported by Winkler-Pasternak foundation, considering different geometries. Utilizing a higher-order shear deformation theory, the displacement field is determined. The equations of motion are formulated using Hamilton's principle, and the solutions are obtained Navier's method employing double Fourier series. Parametric studies regarding the effects of porosity, material distribution, elastic foundation, shell geometry and damping are carried out. Results are given in tabular and graphical form for the free and forced vibration analyses, respectively.

Electrochemical modification of the porosity and zeta potential of montmorillonitic soft rock

  • Wang, Dong;Kang, Tianhe;Han, Wenmei;Liu, Zhiping;Chai, Zhaoyun
    • Geomechanics and Engineering
    • /
    • v.2 no.3
    • /
    • pp.191-202
    • /
    • 2010
  • The porosity (including the specific surface area and pore volume-diameter distribution) of montmorillonitic soft rock (MSR) was studied experimentally with an electrochemical treatment, based on which the change in porosity was further analyzed from the perspective of its electrokinetic potential (${\zeta}$ potential) and the isoelectric point of the electric double layer on the surface of the soft rock particles. The variation between the ${\zeta}$ potential and porosity was summarized, and used to demonstrate that the properties of softening, degradation in water, swelling, and disintegration of MSR can be modified by electrochemical treatment. The following conclusions were drawn. The specific surface area and total pore volume decreased, whereas the average pore diameter increased after electrochemical modification. The reduction in the specific surface area indicates a reduction in the dispersibility and swelling-shrinking of the clay minerals. After modification, the ${\zeta}$ potential of the soft rock was positive in the anodic zone, there was no isoelectric point, and the rock had lost its properties of softening, degradation in water, swelling, and disintegration. The ${\zeta}$ potential increased in the intermediate and cathodic zones, the isoelectric point was reduced or unchanged, and the rock properties are reduced. When the ${\zeta}$ potential is increased, the specific surface area and the total pore volume were reduced according to the negative exponent law, and the average pore diameter increased according to the exponent law.

Analysis on Cyclic Voltammograms at SrO${\cdot}6Fe_{2}O_{3}$ Electronic Ceramics Interfaces (SrO${\cdot}6Fe_{2}O_{3}$전자 Ceramics 계면에서 순환전압도 해석)

  • 천장호;조은철;라극환
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.29A no.11
    • /
    • pp.78-83
    • /
    • 1992
  • The current-voltage characteristics at SrO${\cdot}6Fe_{2}O_{3}$ electronic ceramics interfaces have been studied using cyclic voltammetric methods. The symmetrical and stable cyclic voltammograms, which indicate the same anodic and cathodic process, are obtained on the whole experiments. The approximate saturation current is 50$\mu$A but the value depends on the experimental processes of the electrode specimens. The current-voltage characteristics of SrO${\cdot}6Fe_{2}O_{3}$ electronic ceramics in dilute aqueous electrolytes or double deionized water are determined by the water adsorption process and the interconnected porosity effect. On the other hand, the current-voltage characteristics in relatively concentrate aqueous electrolytes are determined by the ionic adsorption process and the related electrical double layers. The SrO${\cdot}6Fe_{2}O_{3}$ electronic ceramics can be directly used as an electrochemically stabled resistor, electrode or a humidity sensor.

  • PDF