• 제목/요약/키워드: double pancake winding

검색결과 33건 처리시간 0.031초

Design of a IMVA Single-Phase HTS Power Transformer

  • Kim, Sung-Hoon;Kim, Woo-Seok;Park, Chan-Bae;Hahn, Song-yop;Park, Kyeong-Dal;Joo, Hyeong-Gil;Hong, Gye-Won
    • Progress in Superconductivity
    • /
    • 제4권1호
    • /
    • pp.86-89
    • /
    • 2002
  • In this paper, the design of a IMVA single-phase high temperature superconducting(HTS) power transformer with BSCCO-2223 HTS tapes is presented. The rated voltages of each sides of the transformer are 22.9 ㎸ and 6.6 ㎸, respectively The winding of 1MVA HTS transformer is consisted of double pancake type HTS windings, which have advantages of insulation and distribution of high voltage, and are cooled by subcooled liquid nitrogen of 65K. Four HTS tapes were wound in parallel for the windings of low voltage side and the four parallel conductors are transposed. The design of 1MVA HTS transformer, a shell type core made of laminated silicon steel plate is chosen, and the core is separated with the windings by a cryostat with a room temperature bore. The cryostat made of non-magnetic and non-conducting material and a liquid nitrogen sub-cooling system is designed in order to maintain the coolant's temperature of 65K. For electromagnetic analysis of 1MVA HTS transformer, a finite element method of an axis of symmetry is used. The maximum perpendicular component of magnetic flux density of pancake windings is about 0.15T. And through analyzing the magnetic field distribution, an optimal winding arrangement of 1MVA HTS transformer is obtained.

  • PDF

고온초전도 더블 팬케이크 코일들 사이의 접합 방법 (A Joining Method between HTS Double Pancake Coils)

  • 손명환;심기덕;김석호;김해종;배준한;이언용;민치현;성기철
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제55권12호
    • /
    • pp.633-639
    • /
    • 2006
  • High temperature superconductor (HTS) winding coil is one of the key component in superconducting device fabrication. Double-pancake style coils are widely used for such application. High resistance between pancake coils greatly affects the machine design, operating condition and thus the stability. In order to reduce such resistance, experimentalists are looking for efficient and damage free coil connecting methods. In this respect, here we proposed parallel joining method to connect the coils. This is to do crossly joining with HTS tapes on two parallel HTS tapes. Joint samples between two parallel HTS tapes were prepared by using HTS tapes and current-voltage (I-V) characteristic curves were investigated at liquid nitrogen temperature i.e., 77.3 K. A 20 cm length joint connected between two parallel HTS tapes shows $32.5n{\Omega}$, for currents up to 250 A. A small HTS magnet, having two double pancake sub-coils connected together through new parallel joint method was fabricated and their current-voltage (I-V) characteristic curve was investigated. At 77.3K, critical current(Ic) of 97 A and resistance of $55n{\Omega}$ for currents upto 130 A were measured. At operating current 86 A lower than Ic, Joule heats generated in whole magnet and at joint region between sub-coils were 226 mW and 0.4 mW, respectively. Low Joule heat generation suggests that this joining method may be used to fabricate HTS magnet or windings.

변압기용 권선의 전자장 해석 (Electromagnetic Analysis of Transformer windings)

  • 박찬배;김우석;한송엽;최경달;주형길;홍계원
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2002년도 학술대회 논문집
    • /
    • pp.225-228
    • /
    • 2002
  • This paper presents electro-magnetic analysis of IMVA High T$_{c}$ Superconductivity transformer designed conceptually. A winding type of this transformer is a double pancake type, and a transformer of solenoidal winding type is selected to be compared with it. Both transformers have the same sizes and the same turns. Results of the analysis are compared with results of solenoidal winding. And, in this paper, leakage inductances are calculated too. There are a lot of methods to calculate inductance including Neumann Formula, Energy conservation and so on. In this paper, Energy conservation method are selected.d.

  • PDF

외부자계 인가시 더블팬케이크 권선에서 발생하는 교류손실 (AC Loss of the Double Pancake Winding by External Field)

  • 이희준;이승욱;차귀수;이지광
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.99-101
    • /
    • 2001
  • Magnetization loss which is generated in HTS wire varies with the direction of the external magnetic field. This paper calculates the magnetization loss in an HTS transformer winding, where effects of the direction of magnetic field are considered. Kim model is used to consider the variation of the critical current with magnetic field and Brandt equation is used to calculate the loss by perpendicular magnetic field in transformer winding. Magnetization loss in an HTS transformer can be calculated more precisely with this paper.

  • PDF

1MVA 초전도 변압기 전류 통전 시험 (Transportation Current Test for 1 MVA HTS Transformer)

  • 박정호;송희석;김우석;김성훈;이동근;최경달
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2003년도 추계학술대회 논문집
    • /
    • pp.41-44
    • /
    • 2003
  • We manufactured double pancake type windings with BSCCO wire for 1MVA HTS transformer. To verify cracks of HTS wire and performance of manufactured windings, the transportation current was measured. In this paper, we present result of the transportation current test as a DC current and compare a drop of current performance of HTS wire due to tension and rounding during the manufacturing with technical data. We obtained good results and this will be useful for another manufacturing of HTS winding

  • PDF

단면이 원형인 토로이드 권선의 자속밀도 계산 (Magnetic Field Calculation of Toroidal Winding with Circular Section)

  • 이상진
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제12권1호
    • /
    • pp.28-31
    • /
    • 2010
  • A magnetic field calculation method for toroidal type winding which has circular section was developed. At first, the equation for magnetic field by single filament coil was extended using numerical integration to estimate the entire interesting region of solenoid, especially winding region itself. And then, the magnetic field by toroidal arrangement of solenoids was computed with a coordinate transformation of vector fields. The superconducting magnet with toroidal arrangement can be made up of several tens of solenoid type double pancake windings for some applications such as superconducting magnetic energy storage system(SMES). In this system, the field calculation on the high-Tc superconducting(HTS) tape itself is very important because the entire system can be reached to a fault by magnetic stress of conductor or the critical current of superconducting tape can be dramatically reduced under its self field condition. To make matters worse, 3-dimensional analysis is indispensable for this type of magnet and the most of commercial programs with finite element method can be taken too much time for analysis and design. In this paper, a magnetic field calculation method for toroidal type winding with circular section was induced.

Iron Core Design of 3-Phase 40MVA HTS Power Transformer Considering Voltages per Turn

  • Lee, Chan-joo;Seok, Bok-yeol
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제4B권2호
    • /
    • pp.54-58
    • /
    • 2004
  • This paper presents the iron core design method of a high temperature superconducting (HTS) transformer considering voltages per turn (V/T). In this research, solenoid type HTS coils were selected for low voltage (LV) winding and double pancake coils for high voltage (HV) winding, just as in conventional large power transformers. V/T is one of the most fundamental elements used in designing transformers, as it decides the core cross sectional area and the number of primary and secondary winding turns. By controlling the V/T, the core dimension and core loss can be changed diversely. The leakage flux is another serious consideration in core design. The magnetic field perpendicular to the HTS wire causes its critical current to fall rapidly as the magnitude of the field increases slowly. Therefore in the design of iron core as well as superconducting windings, contemplation of leakage flux should be preceded. In this paper, the relationship between the V/T and core loss was observed and also, through computational calculations, the leakage magnetic fields perpendicular to the windings were found and their critical current decrement effects were considered in relation to the core design. The % impedance was calculated by way of the numerical method. Finally, various models were suggested.

고온초전도 동기모터의 계자코일 제작과 특성 (Fabrication and Characteristics of Field Coils for HTS Motor)

  • 손명환;이언용;백승규;조영식;권운식;권영길
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 B
    • /
    • pp.735-737
    • /
    • 2003
  • A superconducting motor consisting of high temperature superconducting (HTS) rotor and air-core stator is under development in Korea Electrotechnology Research Institute. HTS motor was designed for having the rated power of 100hp at 1800 rpm. HTS field winding is composed of sixteen HTS race track shaped coils wound with stainless steel-reinforced Bi-2223 tape conductor by react and wind fabrication method. Nomex Paper was used for electrical insulation. Each of four magnet pole assemblies was constructed with four double pancake sub-coils, mechanically stacked and electrically in series. Four magnet assemblies were fixed on an aluminum support structure to make effective heat transfer. Critical current (Ic) of HTS field winding was 41A but minimum Ic of sub-coils was 35A at 77K and self field. Joule heat generated in HTS field winding was 2.11W at 77K and 35A.

  • PDF

100마력 동기전동기용 고온초전도 계자권선 제작과 특성 (Fabrication and Characteristics of HTS Field Winding of a 100 hp Synchronous Motor)

  • 손명환;백승규;이언용;권영길;조영식;문태선;김영춘;권운식
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권2호
    • /
    • pp.88-93
    • /
    • 2005
  • To develop a 100 hp high temperature superconducting(HTS) motor with high efficiency first in Korea, we fabricated a HTS field winding and test. HTS field winding is composed of sixteen HTS race track shaped coils wound with stainless steel-reinforced Bi-2223 tape conductor by react and wind fabrication method. Nomex paper was used for electrical insulation. Each of four magnet pole assemblies was constructed with four double pancake sub-coils, mechanically stacked and electrically in series. Four magnet assemblies were fixed on an aluminum support structure to make effective heat transfer. The Critical current (Ic) was 41.5A at 77K and self field. However the lowest Ic value of sub-coils was 35A. Joule heat generated by each joints between sub-coils was lower than 1mW at 77K and 34A. And Joule heat generated by the joints between field coils was lower than 10mW at 77K and 34A. Joule heat of the whole field winding was 1W at 77K and 32A. And so, the lowest Ic value of sub-coils was more important than Joule heats generated by all joints. The operating current must be lower than the lowest Ic of all the sub-coils. In this paper, design, construction and testing of HTS field winding, Joule heat generated by the joints, and operating current were discussed.