• 제목/요약/키워드: double mutants

검색결과 77건 처리시간 0.038초

High-Frequency Targeted Mutagenesis in Pseudomonas stutzeri Using a Vector-Free Allele-Exchange Protocol

  • Gomaa, Ahmed E.;Deng, Zhiping;Yang, Zhimin;Shang, Liguo;Zhan, Yuhua;Lu, Wei;Lin, Min;Yan, Yongliang
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권2호
    • /
    • pp.335-341
    • /
    • 2017
  • The complexity of the bacterial recombination system is a barrier for the construction of bacterial mutants for the further functional investigation of specific genes. Several protocols have been developed to inactivate genes from the genus Pseudomonas. Those protocols are complicated and time-consuming and mostly do not enable easy construction of multiple knock-ins/outs. The current study describes a single and double crossover-recombination system using an optimized vector-free allele-exchange protocol for gene disruption and gene replacement in a single species of the family Pseudomonadaceae. The protocol is based on self-ligation (circularization) for the DNA cassette which has been obtained by overlapping polymerase chain reaction (Fusion-PCR), and carries an antibiotic resistance cassette flanked by homologous internal regions of the target locus. To establish the reproducibility of the approach, three different chromosomal genes (ncRNA31, rpoN, rpoS) were knocked-out from the root-associative bacterium Pseudomonas stutzeri A1501. The results showed that the P. stutzeri A1501 mutants, which are free of any plasmid backbone, could be obtained via a single or double crossover recombination. In order to optimize this protocol, three key factors that were found to have great effect on the efficiency of the homologous recombination were further investigated. Moreover, the modified protocol does not require further cloning steps, and it enables the construction of multiple gene knock-in/out mutants sequentially. This work provides a simple and rapid mutagenesis strategy for genome editing in P. stutzeri, which may also be applicable for other gram-negative bacteria.

Development of succinate producing Cellulomonas flavigena mutants with deleted succinate dehydrogenase gene

  • Lee, Heon-Hak;Jeon, Min-Ki;Yoon, Min-Ho
    • 농업과학연구
    • /
    • 제44권1호
    • /
    • pp.30-39
    • /
    • 2017
  • This study was performed to produce succinic acid from biomass by developing mutants of Cellulomonas flavigena in which the succinate dehydrogenase gene (sdh) is deleted. For development of succinate producing mutants, the upstream and downstream regions of sdh gene from C. flavigena and antibiotic resistance gene (neo, bla) were inserted into pKC1139, and the recombinant plasmids were transformed into Escherichia coli ET12567/pUZ8002 which is a donor strain for conjugation. C. flavigena was conjugated with the transformed E. coli ET12567/pUZ8002 to induce the deletion of sdh in chromosome of this bacteria by double-crossover recombination. Two mutants (C. flavigena H-1 and H-2), in which sdh gene was deleted in the chromosome, were constructed and confirmed by PCR. To estimate the production of succinic acid by the two mutants when the culture broth was fermented with biomass such as CMC, xylan, locust gum, and rapeseed straw; the culture broth was analyzed by HPLC analysis. The succinic acid in the culture broth was not detected as a fermentation products of all biomass. One of the reasons for this may be the conversion of succinic acid to fumaric acid by sdh genes (Cfla_1014 - Cfla_1017 or Cfla_1916 - Cfla_1918) which remained in the chromosomal DNA of C. flavigena H-1 and H-2. The other reason could be the conversion of succinyl-CoA to other metabolites by enzymes related to the bypass pathway of TCA cycle.

보리 화학돌연변이제 처리 $M_2$ 유묘의 Isozyme band pattern 차이에 의한 돌연변이율 검정 (Evaluation of Mutation Rate by Differences of Isozyme Band Patterns on $M_2$ Seedling Treated with Chemical Mutagen in Barley)

  • Bon Cheol, Koo;M., Kucharska
    • 한국작물학회지
    • /
    • 제42권2호
    • /
    • pp.214-219
    • /
    • 1997
  • 세 유형의 화학 돌연변이제 처리(1.5mol Na$N_2$ +0.75mol MNH, 0.75mo1 MNH+0.75mo1 M-NH 및 0.5mol MNH+0.5mol MNH)를 한 M$_2$ 유묘를 이용, Est 1, 2, 4, 5, GOT 1, 2, 3, LAP 1, 2 등의 isozyme band pattern에 대한 돌연변이율을 조사하였다. 1. 세 가지 돌연변이제로 처리된 M$_2$식물체에 대한 돌연변이율 조사를 실시하였는데 엽록체에 대한 돌연변이율은 폴랜드 품종인 Dema에서는 3.3%였고 사천006에서는 1.8%로 나타났다. 2. Esterase유전자좌에 대한 돌연변이율은 Dema에서 3.5%로 사천 006의 0%보다 높았으며 GOT와 LAP에서는 두 품종간 차이가 없었다. 3. 세 가지 isozyme중 대개의 돌연번이체가 Es-terase에 관계된 유전자좌에서 발생하였으며 (75% 차지) 나머지에서의 돌연변이율은 극히 미미하였다.

  • PDF

Construction and immunization with double mutant ΔapxIBD Δpnp forms of Actinobacillus pleuropneumoniae serotypes 1 and 5

  • Dao, Hoai Thu;Truong, Quang Lam;Do, Van Tan;Hahn, Tae-Wook
    • Journal of Veterinary Science
    • /
    • 제21권2호
    • /
    • pp.20.1-20.13
    • /
    • 2020
  • Actinobacillus pleuropneumoniae (APP) causes a form of porcine pleuropneumonia that leads to significant economic losses in the swine industry worldwide. The apxIBD gene is responsible for the secretion of the ApxI and ApxII toxins and the pnp gene is responsible for the adaptation of bacteria to cold temperature and a virulence factor. The apxIBD and pnp genes were deleted successfully from APP serotype 1 and 5 by transconjugation and sucrose counter-selection. The APP1ΔapxIBDΔpnp and APP5ΔapxIBDΔpnp mutants lost hemolytic activity and could not secrete ApxI and ApxII toxins outside the bacteria because both mutants lost the ApxI- and ApxII-secreting proteins by deletion of the apxIBD gene. Besides, the growth of these mutants was defective at low temperatures resulting from the deletion of pnp. The APP1ΔapxIBDΔpnp and APP5ΔapxIBDΔpnp mutants were significantly attenuated compared with wild-type ones. However, mice vaccinated intraperitoneally with APP5ΔapxIBDΔpnp did not provide any protection when challenged with a 10-times 50% lethal dose of virulent homologous (APP5) and heterologous (APP1) bacterial strains, while mice vaccinated with APP1ΔapxIBDΔpnp offered 75% protection against a homologous challenge. The ΔapxIBDΔpnp mutants were significantly attenuated and gave different protection rate against homologous virulent wild-type APP challenging.

Functional roles of Tryptophan residues in diketoreductase from Acinetobacter baylyi

  • Huang, Yan;Lu, Zhuo;Ma, Min;Liu, Nan;Chen, Yijun
    • BMB Reports
    • /
    • 제45권8호
    • /
    • pp.452-457
    • /
    • 2012
  • Diketoreductase (DKR) from Acinetobacter baylyi contains two tryptophan residues at positions 149 and 222. Trp-149 and Trp-222 are located along the entry path of substrate into active site and at the dimer interface of DKR, respectively. Single and double substitutions of these positions were generated to probe the roles of tryptophan residues. After replacing Trp with Ala and Phe, biochemical and biophysical characteristics of the mutants were thoroughly investigated. Enzyme activity and substrate binding affinity of W149A and W149F were remarkably decreased, suggesting that Trp-149 regulates the position of substrate at the binding site. Meanwhile, enzyme activity of W222F was increased by 1.7-fold while W222A was completely inactive. In addition to lower thermostability of Trp-222 mutants, molecular modeling of the mutants revealed that Trp-222 is vital to protein folding and dimerization of the enzyme.

Unraveling the Role of Cytochrome P450 as a Key Regulator Lantipeptide Production in Streptomyces globisporus

  • Da-Ran Kim;Su In Lee;Youn-Sig Kwak
    • The Plant Pathology Journal
    • /
    • 제39권6호
    • /
    • pp.566-574
    • /
    • 2023
  • The aim of this study was to investigate the regulation of lantipeptide production in Streptomyces globisporus SP6C4, which produces the novel antifungal lantipeptides conprimycin and grisin, and to identify the role of cytochrome P450 (P450) in tis regulation. To investigate the regulation of lantipeptide production, we created gene deletion mutants, including ΔP450, ΔtsrD, ΔlanM, ΔP450ΔtsrD, and ΔP450ΔlanM. These mutants were characterized in terms of their morphology, sporulation, attachment, and antifungal activity against Fusarium oxysporum. The gene deletion mutants showed distinct characteristics compared to the wild-type strain. Among them, the ΔP450ΔlanM double mutant exhibited a recovery of antifungal activity against F. oxysporum, indicating that P450 plays a significant role in regulating lantipeptide production in S. globisporus SP6C4. Our findings highlight the significant role of P450 in the regulation of lantipeptide production and morphological processes in S. globisporus. The results suggest a potential link between P450-mediated metabolic pathways and the regulation of growth and secondary metabolism in SP6C4, thereby highlighting P450 as a putative target for the development of new antifungal agents.

Blue light signaling in stomatal guard cells

  • Shimazaki, Ken-ichiro;Michio Doi;Toshinori Kinoshita
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.86-89
    • /
    • 2002
  • Blue light activates proton pump, and creates electrical gradient across the plasma membrane and drives $K^{+}$ uptake in stomatal guard cells. In this presentation, we provide evidence for regulatory mechanisms of the pump and the identification of blue light receptor. The pump is shown to be the plasma membrane H$^{+}$- ATPase and is activated through phosphorylation of the C-terminus. Phosphorylation occurred and 14-3-3 protein bound to the phosphorylation site. The binding of 14-3-3 protein was required for the H$^{+}$-ATPase activation. We also found that phot1 phot2 double mutant does not respond to blue light but other mutants respond to blue light by stomatal opening. However, all these mutants are capable of stomatal opening in the presence of fusicoccin, an activator of the H$^{+}$-ATPase. These results suggest that both photl and phot2 act as blue light receptors in guard cells.d cells.

  • PDF

MLS계 항생제에 대한 유도내성 유전자 ermK 및 그 돌연변이체의 유도내성 표현형 (Characteristics of the Resistance Phenotypes by Inducible Resistance Gene ermK and Its Terminator Region Mutants)

  • 최성숙;최응칠
    • 약학회지
    • /
    • 제41권4호
    • /
    • pp.533-537
    • /
    • 1997
  • The characteristics of the resistance phenotypes of Bacillus subtilis having ermk and its terminator region mutants were determined. Wild type ermK(pEC101) and pECMT109(methylase SD-region mutant) showed typical inducible resistance phenotype. pECMF1(terminator1 region mutant) and pECMT2(terminator2 region mutant) showed constitutive resistance to Kitasamycin but inducible resistance to tylosin. In contrast, pECMT3(terminator1 and terminator2 double mutant) and pECMT309(terminator1, terminator2 and methylase SD region triple mutant) showed constitutive resistance both to kitasamycin and tylosin.

  • PDF

Asn-Linked Glycosylation Contributes to Surface Expression and Voltage-Dependent Gating of Cav1.2 Ca2+ Channel

  • Park, Hyun-Jee;Min, Se-Hong;Won, Yu-Jin;Lee, Jung-Ha
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권8호
    • /
    • pp.1371-1379
    • /
    • 2015
  • The Cav1.2 Ca2+ channel is essential for cardiac and smooth muscle contractility and many physiological functions. We mutated single, double, and quadruple sites of the four potential Asn (N)-glycosylation sites in the rabbit Cav1.2 into Gln (Q) to explore the effects of Nglycosylation. When a single mutant (N124Q, N299Q, N1359Q, or N1410Q) or Cav1.2/WT was expressed in Xenopus oocytes, the biophysical properties of single mutants were not significantly different from Cav1.2/WT. In comparison, the double mutant N124,299Q showed a positive shift in voltage-dependent gating. Furthermore, the quadruple mutant (QM; N124,299,1359,1410Q) showed a positive shift in voltage-dependent gating as well as a reduction of current. We tagged EGFP to the QM, double mutants, and Cav1.2/WT to chase the mechanisms underlying the reduced currents of QM. The surface fluorescence intensity of QM was weaker than that of Cav1.2/WT, suggesting that the reduced current of QM arises from its lower surface expression than Cav1.2/WT. Tunicamycin treatment of oocytes expressing Cav1.2/WT mimicked the effects of the quadruple mutations. These findings suggest that Nglycosylation contributes to the surface expression and voltage-dependent gating of Cav1.2.

Specific Biological Activity of Equine Chorionic Gonadotropin (eCG) Glycosylation Sites in Cells Expressing Equine Luteinizing Hormone/CG (eLH/CG) Receptor

  • Byambaragchaa, Munkhzaya;Cho, Seung-Hee;Joo, Hyo-Eun;Kim, Sang-Gwon;Kim, Yean-Ji;Park, Gyeong-Eun;Kang, Myung-Hwa;Min, Kwan-Sik
    • 한국발생생물학회지:발생과생식
    • /
    • 제25권4호
    • /
    • pp.199-211
    • /
    • 2021
  • Equine chorionic gonadotropin (eCG), produced by the endometrial cups of the placenta after the first trimester, is a specific glycoprotein that displays dual luteinizing hormone (LH)-like and follicle-stimulating hormone (FSH)-like effects in non-equid species. However, in equidaes, eCG exhibits only LH-like activity. To identify the specific biological functions of glycosylated sites in eCG, we constructed the following site mutants of N- and O-linked glycosylation: eCGβ/αΔ56, substitution of α-subunit56 N-linked glycosylation site; eCGβ-D/α, deletion of the O-linked glycosylation sites at the β-subunit, and eCGβ-D/αΔ56, double mutant. We produced recombinant eCG (rec-eCG) proteins in Chinese hamster ovary suspension (CHO-S) cells. We examined the biological activity of rec-eCG proteins in CHO-K1 cells expressing the eLH/CG receptor and found that signal transduction activities of deglycosylated mutants remarkably decreased. The EC50 levels of eCGβ/αΔ56, eCGβ-D/α, and eCGβ-D/αΔ56 mutants decreased by 2.1-, 5.6-, and 3.4-fold, respectively, compared to that of wild-type eCG. The Rmax values of the mutants were 56%-80% those of wild-type eCG (141.9 nmol/104 cells). Our results indicate that the biological activity of eCG is greatly affected by the removal of N- and O-linked glycosylation sites in cells expressing eLH/CGR. These results provide important information on rec-eCG in the regulation of specific glycosylation sites and improve our understanding of the specific biological activity of rec-eCG glycosylation sites in equidaes.