• Title/Summary/Keyword: double decryption

Search Result 14, Processing Time 0.025 seconds

Double Encryption of Binary Image using a Random Phase Mask and Two-step Phase-shifting Digital Holography (랜덤 위상 마스크와 2-단계 위상 천이 디지털 홀로그래피를 이용한 이진 영상 이중 암호화)

  • Kim, Cheolsu
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.6
    • /
    • pp.1043-1051
    • /
    • 2016
  • In this paper, double encryption technique of binary image using random phase mask and 2-step phase-shifting digital holography is proposed. After phase modulating of binary image, firstly, random phase mask to be used as key image is generated through the XOR operation with the binary phase image. And the first encrypted image is encrypted again through the fresnel transform and 2-step phase-shifting digital holography. In the decryption, simple arithmetic operation and inverse Fresnel transform are used to get the first decryption image, and second decryption image is generated through XOR operation between first decryption image and key image. Finally, the original binary image is recovered through phase modulation.

Improvement in efficiency and privacy on BCP public key cryptosystem (효율성과 사용자의 프라이버시가 개선된 BCP 공개키 암호시스템)

  • Youn Taek-Young;Park Young-Ho;Lim Jong In
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.6
    • /
    • pp.81-92
    • /
    • 2005
  • A novel public key cryptosystem that provides a double decryption mechanism is proposed at Asiacrypt '03 by Bresson, Catalano and Pointcheval based on the scheme proposed by Clamor and Shoup at Eurocrypt '02. Previous double decryrtion scheme is designed based on $Z_n^2$ where n=pq for two primes p,q. In this paper, we propose an efficient public key scheme with double decryption mechanism based on $Z_p^2_q$ for two primes p,q. Our scheme is more efficient an the previous schemes. Moreover, we review the previous schemes in a privacy point of view and propose a privacy enhanced double decryption scheme.

Optical Image Encryption and Decryption Considering Wireless Communication Channels

  • Cho, Myungjin;Lee, In-Ho
    • Journal of Information Processing Systems
    • /
    • v.10 no.2
    • /
    • pp.215-222
    • /
    • 2014
  • In this paper, we discuss optical encryption and decryption considering wireless communication channels. In wireless communication systems, the wireless channel causes noise and fading effects of the transmitted information. Optical encryption technique such as double-random-phase encryption (DRPE) is used for encrypting transmitted data. When the encrypted data is transmitted, the information may be lost or distorted because there are a lot of factors such as channel noise, propagation fading, etc. Thus, using digital modulation and maximum likelihood (ML) detection, the noise and fading effects are mitigated, and the encrypted data is estimated well at the receiver. To the best of our knowledge, this is the first report that considers the wireless channel characteristics of the optical encryption technique.

Accumulation Encoding Technique Based on Double Random Phase Encryption for Transmission of Multiple Images

  • Lee, In-Ho
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.401-405
    • /
    • 2014
  • In this paper, we propose an accumulation encoding scheme based on double random phase encryption (DRPE) for multiple-image transmission. The proposed scheme can be used for a low-complexity DRPE system due to the simple structure of the accumulation encoder and decoder. For accumulation encoding of multiple images, all of the previously encrypted data are added, and hence the accumulation encoding can improve the security of the DRPE-encrypted data. We present a scheme for encryption and decryption for DRPE-based accumulation encoding, and a method for accumulation encoding and decoding. Finally, simulation results verify that the DRPE-based accumulation encoding scheme for multiple images is powerful in terms of data security.

Key Phase Mask Updating Scheme with Spatial Light Modulator for Secure Double Random Phase Encryption

  • Kwon, Seok-Chul;Lee, In-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.13 no.4
    • /
    • pp.280-285
    • /
    • 2015
  • Double random phase encryption (DRPE) is one of the well-known optical encryption techniques, and many techniques with DRPE have been developed for information security. However, most of these techniques may not solve the fundamental security problem caused by using fixed phase masks for DRPE. Therefore, in this paper, we propose a key phase mask updating scheme for DRPE to improve its security, where a spatial light modulator (SLM) is used to implement key phase mask updating. In the proposed scheme, updated key data are obtained by using previous image data and the first phase mask used in encryption. The SLM with the updated key is used as the second phase mask for encryption. We provide a detailed description of the method of encryption and decryption for a DRPE system using the proposed key updating scheme, and simulation results are also shown to verify that the proposed key updating scheme can enhance the security of the original DRPE.

Double Random Phase Encryption Based Orthogonal Encoding Technique for Color Images

  • Lee, In-Ho;Cho, Myungjin
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.129-133
    • /
    • 2014
  • In this paper, we propose a simple Double random phase encryption (DRPE)-based orthogonal encoding technique for color image encryption. In the proposed orthogonal encoding technique, a color image is decomposed into red, green, and blue components before encryption, and the three components are independently encrypted with DRPE using the same key in order to decrease the complexity of encryption and decryption. Then, the encrypted data are encoded with a Hadamard matrix that has the orthogonal property. The purpose of the proposed orthogonal encoding technique is to improve the security of DRPE using the same key at the cost of a little complexity. The proposed orthogonal encoder consists of simple linear operations, so that it is easy to implement. We also provide the simulation results in order to show the effects of the proposed orthogonal encoding technique.

Double Encryption of Digital Hologram Based on Phase-Shifting Digital Holography and Digital Watermarking (위상 천이 디지털 홀로그래피 및 디지털 워터마킹 기반 디지털 홀로그램의 이중 암호화)

  • Kim, Cheol-Su
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.22 no.4
    • /
    • pp.1-9
    • /
    • 2017
  • In this Paper, Double Encryption Technology Based on Phase-Shifting Digital Holography and Digital Watermarking is Proposed. For the Purpose, we First Set a Logo Image to be used for Digital Watermark and Design a Binary Phase Computer Generated Hologram for this Logo Image using an Iterative Algorithm. And Random Generated Binary Phase Mask to be set as a Watermark and Key Image is Obtained through XOR Operation between Binary Phase CGH and Random Binary Phase Mask. Object Image is Phase Modulated to be a Constant Amplitude and Multiplied with Binary Phase Mask to Generate Object Wave. This Object Wave can be said to be a First Encrypted Image Having a Pattern Similar to the Noise Including the Watermark Information. Finally, we Interfere the First Encrypted Image with Reference Wave using 2-step PSDH and get a Good Visible Interference Pattern to be Called Second Encrypted Image. The Decryption Process is Proceeded with Fresnel Transform and Inverse Process of First Encryption Process After Appropriate Arithmetic Operation with Two Encrypted Images. The Proposed Encryption and Decryption Process is Confirmed through the Computer Simulations.

Query with SUM Aggregate Function on Encrypted Floating-Point Numbers in Cloud

  • Zhu, Taipeng;Zou, Xianxia;Pan, Jiuhui
    • Journal of Information Processing Systems
    • /
    • v.13 no.3
    • /
    • pp.573-589
    • /
    • 2017
  • Cloud computing is an attractive solution that can provide low cost storage and powerful processing capabilities for government agencies or enterprises of small and medium size. Yet the confidentiality of information should be considered by any organization migrating to cloud, which makes the research on relational database system based on encryption schemes to preserve the integrity and confidentiality of data in cloud be an interesting subject. So far there have been various solutions for realizing SQL queries on encrypted data in cloud without decryption in advance, where generally homomorphic encryption algorithm is applied to support queries with aggregate functions or numerical computation. But the existing homomorphic encryption algorithms cannot encrypt floating-point numbers. So in this paper, we present a mechanism to enable the trusted party to encrypt the floating-points by homomorphic encryption algorithm and partial trusty server to perform summation on their ciphertexts without revealing the data itself. In the first step, we encode floating-point numbers to hide the decimal points and the positive or negative signs. Then, the codes of floating-point numbers are encrypted by homomorphic encryption algorithm and stored as sequences in cloud. Finally, we use the data structure of DoubleListTree to implement the aggregate function of SUM and later do some extra processes to accomplish the summation.

Design of files and directories with security features within the Windows O.S using Visual C++ (Visual C++을 이용한 윈도우 운영체제 내의 파일 및 디렉토리 보안 기능 설계)

  • Jang, Seung-Ju;Kim, Jun-ho
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2009.05a
    • /
    • pp.510-514
    • /
    • 2009
  • This program was developed in Visual C + +, the Windows operating system has security features within the files and directories. File and directory security, encryption / decryption operations yirueojimyeo file security can be round, to know the value of the key and security password I need to know the directory is designed to be decrypted. In addition, ECB, CBC algorithm and 3DES, SEED algorithms and methods, and encryption. De0 can not run that created the file extension, as has been developed to allow for double security.

  • PDF

Using Double Photon Transmission of Quantum Cryptography (이중광자 전송을 통한 양자비밀통신)

  • Seol, Jung-Ja;Rim, Kwang-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.8
    • /
    • pp.1857-1864
    • /
    • 2013
  • In this paper, we improve the quantum cryptography system using a dual photon transmission plaintext user password algorithmwas designed to implementthe exchange. Existing quantum cryptographic key transport protocols, algorithms, mainly as a quantum cryptography system using the paper, but it improved the way the dual photon transmission through the quantum algorithm re not getting transmitted plaintext.