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Abstract 
Cloud computing is an attractive solution that can provide low cost storage and powerful processing 
capabilities for government agencies or enterprises of small and medium size. Yet the confidentiality of 
information should be considered by any organization migrating to cloud, which makes the research on 
relational database system based on encryption schemes to preserve the integrity and confidentiality of data in 
cloud be an interesting subject. So far there have been various solutions for realizing SQL queries on 
encrypted data in cloud without decryption in advance, where generally homomorphic encryption algorithm 
is applied to support queries with aggregate functions or numerical computation. But the existing homomorphic 
encryption algorithms cannot encrypt floating-point numbers. So in this paper, we present a mechanism to 
enable the trusted party to encrypt the floating-points by homomorphic encryption algorithm and partial 
trusty server to perform summation on their ciphertexts without revealing the data itself. In the first step, we 
encode floating-point numbers to hide the decimal points and the positive or negative signs. Then, the codes 
of floating-point numbers are encrypted by homomorphic encryption algorithm and stored as sequences in 
cloud. Finally, we use the data structure of DoubleListTree to implement the aggregate function of SUM and 
later do some extra processes to accomplish the summation. 
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1. Introduction 

Cloud database services, for example Amazon Relational Database Service and Microsoft SQL Azure, 
are attractive for enterprises to outsource their databases. Enterprises can get started without 
purchasing their expected future software and employing DBA, hence cloud can reduce the total cost of 
ownership [1]. However, the main problem is that parts of the data may be sensitive, such as credit card 
numbers or other personal information. Storing and processing sensitive data on infrastructure that 
provided by a third party increases the risk of unauthorized disclosure if the infrastructure is 
compromised by an adversary [2]. A straightforward approach to addressing the security and privacy 
problem is to encrypt data before they are sent to cloud. However, after being encrypted, a database 
might not be easily queried.  When a database is large, it is not acceptable to decrypt the entire database 
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before performing each query because the decryption might be very slow. On the other hand, if the 
decryption is done on the cloud, the decrypted database is again at the risk of having its security and 
privacy breached. Ideally, a query should be executed directly over the encrypted database, producing 
encrypted query result, which can be decrypted by users. The database community, at least for the last 
decade, has been grappling with querying encrypted data. The CryptDB [3-7] is a system supporting 
SQL queries over encrypted database, which extends the existing DBMSs to support homomorphic 
operations like SUM and AVG. MONOMI [8] works by encrypting the entire database and running 
analytical queries over the encrypted data. A secure query processing system (SDB) on relational tables 
and a set of elementary operations on encrypted data that allow data interoperability are proposed 
[9,10]. TrustedDB [11] is a trusted relational database based on a trusted hardware. But these systems 
except TrustedDB do not query floating-point numbers. One primary cause is that existing encryption 
algorithms do not support floating-point numbers in which the decimal points are not fixed. 

The goal of this paper is to enable database to query with SUM aggregate function on encrypted 
floating-point numbers without revealing the data itself in cloud. We apply different encrypting 
algorithms to different queries on floating-point data type. For queries which mainly involve comparison 
operators like equality checks, equality joins and so on, floating-point numbers could be as strings to be 
encrypted by a deterministic encryption algorithm, while order preserving encryption could be applied 
to range queries as well as the MAX, MIN queries [12]. When it comes to queries with arithmetic 
operators or SUM aggregate, the existing homomorphic encryption algorithms do not natively support. 
Hence, the focus of this paper is to provide a method of encoding floating-point numbers to hide their 
decimal points and positive or negative signs in order to meet the encryption algorithms. Then encrypt 
the codes and query the corresponding encrypted data with SUM aggregate function, which can’t be 
performed in CryptDB [7]. The coding form of floating-point data type is represented by the data 
structure of DoubleListTree to facilitate implementation of the function of SUM. More concretely, we 
make the following contributions: 

(1) Encoding floating-point numbers: We provide a coding scheme of floating point data type and 
the arithmetic rules for encoded floating points. After floating-point numbers are encoded to 
hide decimal points and positive or negative signs, the codes can be encrypted as sequences. 

(2) The data structure of DoubleListTree: The DoubleListTree can help to sum the encoded 
floating-point numbers, and it would not lose the computational accuracy. 

(3) The function of SUM: We present an algorithm to implement the function of SUM, which 
sums directly over the encrypted database. The function of SUM does not decrypt the input, 
and it can be run by an untrusted party without revealing their data and internal states. It will 
have great practical implications in the outsourcing of private computations, especially in the 
context of cloud computing. 

The rest of this paper is structured as follows. In Section 2, we discuss the related work. Then, we 
describe the coding scheme of floating point data type and the arithmetic rules for encoded floating 
points in Section 3. The floating-point numbers after being encoded and encrypted are stored as 
sequences in cloud database, and in Section 4, we present the data structure of DoubleListTree, and the 
implementation of the function of SUM, as well as some extra processes (e.g., revision, adjustment) for 
summation. Next, we provide performance test in Section 5 and conclude our work in Section 6. 
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2. Related Work 

The early research of executing SQL over encrypted data [13] proposes that SQL is executed over the 
encrypted data by rewriting a relational algebraic similarly to be executed over the unencrypted data. 
Decrypting data and complex queries are executed on the client. But there are some limitations on 
searching and querying on encrypted data, for example, certain queries with joining and sorting are not 
supported or highly inefficient. Moreover, in order to solve these problems, DBMS is required to be 
modified or some of queries are performed on the client. 

In contrast, CryptDB proposes a database proxy layer to encrypt and decrypt data so that the internal 
structure of DBMS is not modified, namely CryptDB uses native DBMS [3]. It proposes three key ideas, 
the first is to execute SQL query on encrypted data, the second is to adopt adjustable encryption 
strategies for different queries, and the third is to chain encrypted keys to user passwords. More detail 
in the second idea, CryptDB encrypts data by an ‘onion’ in which different query is based on different 
encrypting algorithm. SQL queries, such as equality selection, equality join, order, range join, text 
searching, SUM of integer data, etc., can be performed. Processing a query in CryptDB involves the 
following four steps [3]. the application issues a query, which the proxy intercepts and rewrites: it 
anonymizes each table and column name, and using the master key MK, encrypts each constant in the 
query with an encryption scheme best suited for the desired operation; the proxy checks if the DBMS 
server should be given keys to adjust encryption layers before executing the query, and if so, issues an 
UPDATE query at the DBMS server that invokes a user defined function (UDF) to adjust the 
encryption layer of the appropriate columns; the proxy forwards the encrypted query to the DBMS 
server, which execute it using standard SQL (occasionally invoking UDFs for aggregation or keyword 
search); the DBMS server returns the encrypted query result, which the proxy decrypts and returns to 
the application. 

Tu et al. [8] points out that CryptDB only supports queries including computation and hardly 
supports analytical query. Therefore, MONOMI is established based on the design of CryptDB, which 
can process the complex analytical query and large data set. As executing analytical load to encrypted 
data on the server is very difficult, MONOMI proposes an executing method of splitting client/server. 
Splitting executing allows MONOMI to execute parts of queries to encrypted data on untrusted server 
and performed through the scheme the same with CryptDB, while the rest of queries are executed after 
decrypting data on the trusted client. 

Different from CryptDB and MONOMI in which different encrypting algorithms are used to 
different queries, a SDB in [9] is realized through a group of security operators (e.g., ×, ±, π, ⊗, ⋈S) with 
data interoperation which can efficiently support a quantity of complex SQL query including all TPC-H 
benchmark queries on the server. In view of the limitations of fully and partially homomorphic 
encryption, SDB does not adopt homomorphic encryption algorithm adopted in CryptDB and 
MONIMI instead of using a secret-sharing scheme in SMC model [14] and the solution in ShareMind 
[15]. Encryption scheme adopted by SDB can support complex operations executed on the server, but it 
has some limitations. For example, SDB does not natively support operators which their output results 
are non-integer values, e.g., square root (√). 

Hacigumus et al. [16] thinks that hardware encryption is better than software encryption. As a result, 
a security coprocessor unit (SCPU) hardware is introduced in TrustedDB. Bajaj and Sion [11] deems 
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any encryption methods based on software have an inherent defect that expression is limited, so it is 
best to guarantee the privacy of data through trusted hardware. Hence, TrustedDB provides more 
secure data protection by SCPU hardware, and supported query types are not limited. Nevertheless, 
there are some limitations as well, for example, query parser in TrustedDB cannot parse multi-level 
nested sub-queries and views defined by user [11]. The cost and the performance constraint of 
TrustedDB is higher than methods of software. 

When it comes to floating point data type, CryptDB can encrypt floating-points values, but it cannot 
perform aggregations on encrypted floating-point values [7]. Neither does the MONOMI system, for it 
is adopted the same encryption mechanism with CryptDB. As for SDB, its operators are applicable only 
to data values of integer domains [9], so it’s unavailable to floating point data type as well. Therefore, 
how to support encryption of floating point data type and simple arithmetic computation followed is an 
issue. If floating-point numbers are encrypted as strings, basic arithmetic calculations on strings are not 
supported. In addition, if using 3Kdec algorithm to realize numeric to numeric encryption for easily 
storing [17], there is no indication of enabling the arithmetic calculations on encrypted data as well. The 
method to expand the homomorphic encryption on the integer to the decimal by ‘similar modular 
arithmetic’ is proposed [18]. But there are some defects need to illustrate, for instance, one ciphertext 
needs to be larger than the other one if its corresponding plaintext is larger than that plaintext for 
additive homomorphic encryption. Moreover, floating-point numbers need to enlarge to be integers for 
multiplicative homomorphic encryption, which would make the computational accuracy lose. 

 
 

3. Encoding and Encrypting Floating-Point Numbers 

The existing researches on encryption of floating-point numbers either lose the precision of data or 
cannot query computation over encrypted data. So the processing mechanism in this paper is to encode 
floating-point numbers by a coding scheme to ensure the precision and to hide their decimal points and 
their positive or negative signs, so that they can meet the homomorphic encryption algorithm. 
Subsequently the encoded values perform summation according to addition rules. 

 
3.1 Coding Scheme 
 

Floating-point numbers can be represented in a variety of ways. Oracle uses the type of FLOAT, 
DOUBLE and NUMBER for typical floating-point numbers, where the precision of NUMBER type can 
reach 38 decimal digits. In order to implement the NUMBER data type, Oracle encodes a floating-point 
number to hide its decimal point and its positive or negative sign, and the floating-point calculations 
are performed by kernel drivers. 

Inspired by this, we also encode floating-point numbers, and encrypt the codes which can be summed 
directly over the database instead of being decrypted. 

Floating-point numbers are encoded as sequences, and a sequence has several components: tag, 
[number 1], [number 2], …, [number k], …, where each ‘number n’ is a positive integer and ‘tag’ 
indicates whether the floating-point number is positive or negative and its decimal point. The coding 
rules are described as follows in detail. 
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(1) Segment: The decimal point of a floating-point number is taken as demarcation point. Starting 
from the right most side of the integer part, it is divided into groups of S decimal digits, and 
balancing the number of digits by putting zeros. Starting from the left most side of the decimal 
part, it is divided into groups of S decimal digits, and balancing the number of digits by putting 
zeros. Now we have certain numbers of groups of the floating-point number, and then write in 
the same order in which they used to be. 

(2) The positive or negative sign: ‘tag’ reveals the positive or negative sign of a floating-point 
number. If the value of ‘tag’ is greater than or equal to 193, the sequence represents a positive 
floating-point number; if the value of ‘tag’ is less than or equal to 62, the sequence represents a 
negative floating-point number. 

(3) The decimal point: ‘tag’ also indicates the decimal point. We set the value of ‘tag’ to N, then the 
number of groups of integer part in a positive floating-point number is N-193+1, and the 
number of groups of integer part in a negative floating-point number is 62-N+1. The rest 
groups of the sequence belong to decimal part. 

(4) Encode each group: If a floating-point number is positive, each group is encoded as the true 
value itself; otherwise each group is encoded as 10S subtracts the true value. 

Examples of encoding floating-point numbers in the instance of S equals to 2 are as follows: 

53021.128: 195, 05, 30, 21, 12, 80 
-123.128035: 061, 99, 77, 88, 20, 65 

 

3.2 Addition Rules  
 

The addition of two sequences includes ‘Positive + Positive’, ‘Negative + Negative’ and ‘Positive + 
Negative’. Two sequences are added from the lowest order group to the highest order group. Due to a 
floating-point number is divided into groups of S decimal digits, the maximum number of each group is 
10S-1, and the minimum is 0. 

 
(1) ‘Positive + Positive’ 
The result of ‘Positive + Positive’ must be a positive value, and carry may be produced. The tag value 

of sum takes the larger tag of two addends. Suppose two characters, a and b, represent individually the 
value of one group place of two addends, and the corresponding true value and coding value are shown 
in Table 1. 

 
Table 1. True value and coding value on type of ‘Positive + Positive’ 

 True value Coding value 

Positive a a 

Positive b b 

 

1) If a+b≥10S, it produces carry and the sum which is produced in one group place as result of 
addition is encoded into a+b-10S, and the carry is propagated to the next high order group. If 
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the highest group produces the carry, a new group encoded into 1 is added to the sequence of 
the sum and the tag of the sum pluses 1. 

2) If a+b<10S, it cannot produce carry and the sum which is produced in one group place as result 
of addition is encoded into a+b. 

Proof. If a+b≥10S, the sum which is produced in one group place as result of addition is greater than 
or equal to 10S, so it produces carry. The sum is a+b-10S and is encoded into a+b-10S. 

If a+b<10S, the sum which is produced in one group place as result of addition is less than 10S, so it 
cannot produce carry. The sum is a+b and is encoded into a+b. 

 

(2) ‘Negative + Negative’ 
The result of ‘Negative + Negative’ must be a negative value, and carry may be produced. The tag 

value of sum takes the smaller tag of two addends. Suppose two characters, a and b, represent 
individually the value of one group place of two addends, and the corresponding true value and coding 
value are  shown in Table 2. 

 
Table 2. True value and coding value on type of ‘Negative + Negative’ 

 True value Coding value 

Negative a 10S-a 

Negative b 10S-b 

 

1) If (10S-a)+(10S-b)>10S, it cannot produce carry and the sum which is produced in one group 
place as result of addition is encoded into (10S-a)+(10S-b)-10S. 

2) If (10S-a)+(10S-b)≤10S, it produces carry and the sum which is produced in one group place as 
result of addition is encoded into (10S-a)+(10S-b), and the carry is propagated to the next high 
order group. If the highest group produces the carry, a new group encoded into 10S-1 is added 
to the sequence of the sum and the tag of the sum minuses 1. 

Proof. If (10S-a)+(10S-b)>10S, namely a+b<10S, the sum which is produced in one group place as 
result of addition is less than 10S, so it cannot produce carry. The sum is a+b and is encoded into 10S-
(a+b), namely (10S-a)+(10S-b)-10S . 

If (10S-a)+(10S-b)≤10S , namely a+b≥10S, the sum which is produced in one group place as result of 
addition is greater than or equal to 10S, so it produces carry. The sum is a+b-10S and is encoded into 
10S-(a+b-10S), namely (10S-a)+(10S-b). 

 

(3) ‘Positive + Negative’ 
There are three possible results of ‘Positive + Negative’: a positive value, a negative value or 0. Carry is 

impossible to be yielded, but borrow may be produced. Suppose character a represents the value of one 
group place of the Positive, character b represents the value of one group place of the Negative, and t1, t2 
is the value of the two tags. These are shown in Table 3. 
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Table 3. Tag value, true value and coding value on type of ‘Positive + Negative’ 

 Tag value True value Coding value 

Positive t1 a a 

Negative t2 b 10S-b 

 

1) If t1+t2>255, the result is a positive value, and the tag of the sum takes t1. 
a) If a+(10S-b)≥10S, it does not require borrow and the sum which is produced in one group 

place as result of addition is encoded into a+(10S-b)-10S. 
b) If a+(10S-b)<10S, it requires borrow and the sum which is produced in one group place as 

result of addition is encoded into a+(10S-b), and the borrow is extorted from the next high 
order group. If the highest group equals to 0, it would be removed from the sequence of the 
sum and the tag of the sum minuses 1, then repeat the judgment. 

2) If t1+t2<255, the result is a negative value, and the tag of the sum takes t2. 
a) If a+(10S-b)≤10S, it does not require borrow and the sum which is produced in one group 

place as result of addition is encoded into a+(10S-b). 
b) If a+(10S-b)>10S, it requires borrow and the sum which is produced in one group place as 

result of addition is encoded into a+(10S-b)-10S, and the borrow is extorted from the next 
high order group. If the highest group equals to 10S, it would be removed from the sequence 
of the sum and the tag of the sum pluses 1, then repeat the judgment. 

3) If t1+t2=255, the positive or negative sign of the result is uncertain, so the following judgment 
shall be made sequentially from the highest group to the lowest group. 
a) If a+(10S-b)>10S, the result is a positive value, the next process is the same as 1). 
b) If a+(10S-b)<10S, the result is a negative value, the next process is the same as 2). 
c) If a+(10S-b)=10S, then same judgment shall be continuously made to the next low order 

group. If this satisfies for all groups, two numbers represented by the two sequences are 
opposite numbers, and the result is 0, corresponding coding adopts the coding of +0, 
namely 193, 0. 

Proof. If t1+t2>255, namely t1-193>62-t2, according to the signification of tag, the absolute value of the 
positive number is greater than that of the negative number, so the result of ‘Positive + Negative’ is a 
positive value. Then, if a+(10S-b)≥10S, namely a-b≥0, borrow is not required and the sum is a-b and is 
encoded into a-b, namely a+(10S-b)-10S; if a+(10S-b)<10S, namely a-b<0, borrow is required and the 
sum is (a+10S)-b and is encoded into (a+10S)-b, namely a+(10S-b). 

Similarly, if t1+t2<255, the result of ‘Positive + Negative’ is a negative value. Then, if a+(10S-b)≤10S, 
namely a-b≤0, borrow is not produced and the sum is b-a and encoded into 10S-(b-a), namely a+(10S-
b); if a+(10S-b)>10S, namely a-b>0, borrow is produced and the sum is (b+10S)-a and is encoded into 
10S-((b+10S)-a), namely a+(10S-b)-10S. 

If t1+t2=255, the length of integer part of the positive is the same with that of the negative, so 
judgment shall be made sequentially from the highest group to the lowest group. If a+(10S-b)>10S, 
namely a-b>0, it is shown that the absolute value of the positive value is greater than that of the 
negative, so the result is a positive value; if a+(10S-b)<10S, namely a-b<0, it is shown that the positive 
value is less than the absolute value of the negative, so the result is a negative value; otherwise, the 
judgment shall be made repeatedly to the right lower group. 
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3.3 Encryption of Each Group in Sequence 
 

The decimal points of two floating-points are aligned if we add two floating-point numbers. 
Therefore, if we have wish to compute on encrypted floating-point numbers, the encryption algorithm 
must allow order relations between data items to be established based on their encrypted value without 
revealing the data itself and be additive homomorphism simultaneously. But there are not real to satisfy 
these requirements in encryption algorithms thus far. These systems, such as CryptDB, MONOMI, and 
SDB, cannot support floating point data type. For the above reasons, we encode floating-point numbers 
before encryption, and then we align the decimal points of floating-point numbers by comparing the 
value of the ‘tag’, so we do not encrypt the ‘tag’ in the codes of floating-point numbers or it is encrypted 
by order preserving encryption algorithm. In order to sum the values in one group place, we encrypt 
individually each group with homomorphic encryption. 

Homomorphic encryption (HOM) is a secure probabilistic encryption scheme, allowing the server to 
perform computations on encrypted data with the final result decrypted at the client or the proxy. 
While fully homomorphic encryption [19-23] is prohibitively slow. Homomorphic encryption for 
specific operations is efficient. To support summation, we adopt the Paillier cryptosystem [24], which is 
a probabilistic asymmetric algorithm for public key cryptography with the security based on DCR 
assumption. It has the homomorphic addition of plaintexts and adopts the scheme of variable-length 
encryption. With Paillier, multiplying the encryptions of two values results is an encryption of the sum 
of the values, i.e. HOMk(x).HOMk(y)=HOMk(x+y), where the multiplication is performed modulo 
some public-key value. To compute SUM aggregates, we replace SUM with calling a UDF that performs 
Paillier multiplication on a column encrypted with HOM. HOM can also be used for computing 
average by having DBMS server return the sum and the count separately. 

In Paillier encryption algorithm, we choose two large prime numbers p and q randomly and both 
primes are of equal length but distinct at the beginning, where N decides decimal digits of n that equals 
to p×q. The value to encrypt must be larger than 0 and less than n, so the maximum value that can be 
encrypted can reach at least N-1 decimal digits under conservative and is denoted by MAX_N. We 
segment a floating-point number into groups of S decimal digits, where we use MAX_S to denote the 
maximum value of one group being encrypted. Then the radio MAX_N / MAX_S captures the 
approximate amount that can be summed simultaneously. For example, MAX_N equals to 999,999,999 
when set N to 10, MAX_S equals to 99 when set S to 2. In this case, MAX_N / MAX_S equals to 
10,101,010, namely it meets approximately 10,101,010-row addition. The larger of the value N, the 
higher security it is, meanwhile, the more space for storing. When N is determined, the larger of the 
value S, the less amount that can be summed simultaneously. Consequently, we should balance the 
value of N and S based on specific case. In this paper, we set N to 10 and S to 2 for better presentation. 

When it comes to encryption on each group, some issues appear when doing addition. According to 
the addition rules, we need to compare certain values to judge whether generating carry or borrow. But 
Paillier does not hold order preserving, neither do the other homomorphic encryptions. In addition, we 
need the sum to subtract 10S when it yields carry or borrow, Paillier doesn’t support subtraction and 
encryption of negative values as well. Consequently, we can do nothing but modify the coding scheme 
of the floating-points. From the above statement, we could grab that the key factor is requiring handling 
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carry or borrow while doing addition. Hence, we consider whether carry or borrow processing could be 
postponed. Being synthetically considered, when we encode floating-point numbers, the value of each 
group retains the true value itself. And floating point summation is resolved respectively by the positive 
and the negative in our new scheme, the corresponding groups are directly in accumulation without 
handling carry or borrow in the respective process. Besides, the two results of SUM are further 
processed at proxy, and we discuss it in Section 4. 

According to our new coding scheme, the codes of floating-point numbers are encrypted as follows: 

Tag#HOM(group 1)#HOM(group 2)#…#HOM(group k)#… 

It is stored on database as sequence, where ‘#’ is a separator of groups or tag. For example: 
53021.128: 195, 05, 30, 21, 12, 80 
195#7592707341287075565#5716481525726494602#2133526181342764621#7350018878135172758#
2488746985469454098 
-123.128035: 061, 01, 23, 12, 80, 35 
061#6918311798681856591#128020859825343251#4814521694045254414#5951508997425890630#6
10324281427975471 
 
 

4. Summation on Encrypted Data 

In this section, we describe the summation of floating-point numbers after encoded and encrypted. 
We must align the decimal points to add floating-point numbers. However, the native arithmetic 
addition could not be applied to encrypted sequences straightforward as the decimal points are hidden 
in them, so the codes of floating-point numbers will be converted to binary trees to assist summation. 
Meanwhile, the SUM aggregate operator must be replaced with an invocation of UDF that performs 
HOM addition of ciphertexts. 

 
4.1 Data Structure 
 

In order to align the decimal point, a code is converted to a binary tree. Root node stores the tag of a 
code which indicates the decimal point and the positive or negative sign. The left sub-tree denotes the 
integer part of a floating-point number, and the right sub-tree denotes the decimal part. All nodes of the 
tree except the root represent all groups. The group order of the integer part is from the leaf to upper in 
the left sub-tree, so the leaf of left sub-tree is the highest group of a code. The group order of the 
decimal part is from the first node of right sub-tree to the leaf, so the leaf of right sub-tree is the lowest 
group of a code. The nodes of two binary trees in the same position can be added while others cannot. 
We use double-headed points to link each node. The data structure is called a ‘double linked list binary 
tree’ structure (DoubleListTree), in which we can easily align the decimal points by the root node, 
decimal parts added would be done effortlessly by traversing the right sub-tree, integer parts added by 
traversing the left sub-tree, and the double linked list is better for reverse traversal. Examples are shown 
in Fig. 1. 
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Fig. 1. DoubleListTree. 
 

4.2 Implementing the Function of SUM 
 

The summation on encrypted data is divided into three steps: at first all positive floating-point 
numbers and the negative among which all are encoded and encrypted are summed separately under 
encryption using DoubleListTree structure by calling UDF on server; then two summations will be 
decrypted and revised at proxy; subsequently, the summation of the negative is adjusted to do the final 
addition with the summation of the positive and the result of SUM aggregate is presented to the end 
user finally. 

The floating-point numbers are encoded as sequences by the new coding scheme, then we encrypt 
each group in sequences respectively by Paillier. Transform sequences to DoubleListTree structures and 
traverse all nodes, and the nodes that are in the same position are added. Summation of all the positive 
floating-point numbers or all the negative is in the same binary tree structure, and we output the result 
in order of the code. Examples are shown in Fig. 2. 

 

 
Fig. 2. (a) Addition of plaintexts and (b) addition of ciphertexts. 

 
The first step is described in Algorithm 1. 
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Algorithm 1. The algorithm of summation on encrypted float-point numbers. 

Input: S, a collection of sequences, and all sequences are encrypted. 

Output: PLUS, the summation of all positive values in S; MINUS, the summation of all negative 

values in S. Both are sequences. 

Begin 

1. Tplus=∅, Tminus=∅;                   /* Both are DoubleListTree structure type. */ 

2. For each sequence s∈S: 

2.1 T←s;                                  /* Transform a sequence into a DoubleLisTree structure. */ 

2.2 For every node n∈T and every node nt∈Tplus or Tminus, do the following operations:   /* If 

s≥0, added to Tplus, otherwise added to Tminus . */ 

(i). nt←nt+n;                    /* Two values of corresponding nodes are subjected to addition. */ 

3. PLUS←Tplus, MINUS←Tminus;   /* Traverse the trees to sequences. */ 

More detail about the traversal: 

a) Traverse the root value, and add a separator ‘#’. 

b) Traverse the left sub-tree from leaf node to root, and add a separator ‘#’ between each node. 

c) Supplement a separator ‘#’. 

d) Traverse the right sub-tree from root node to leaf, and add a separator ‘#’ between each node. 

4. Return PLUS, MINUS; 

End 

 

 

Fig. 3. Revision of sequence. 
 

4.3 Remaining Work in Proxy 
 

Two results in above section are generated. When the proxy receives these results, it decrypts and 
revises them at first. Each group is decrypted respectively by Paillier algorithm. Because the sum is 
produced in one group place of multiple floating-point numbers as result of addition, each group of the 
sum might be greater than or equals to 10S, which is beyond the maximum of each group. If the sum is 
greater than or equals to 10S, the carry is generated and is propagated to the next high order group. 
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Suppose the sum of one group is depicted in GSUM, it is depicted in CGSUM after being revised, and C 
denotes the carry the relationship among them is as follows: 

 
CGSUMi = (GSUMi + Ci-1) % 10

S
. 

Ci = (GSUMi + Ci-1) / 10
S
. 

 

If the highest group has the carry, add a new group before the highest order group and increment the 
tag if the result is positive or decrement it if negative repeatedly, correspondingly a new node is hung at 
the leaf of the left sub-tree and increment the root value if the result is positive or decrement it if 
negative repeatedly. The example is shown in Fig. 3.  

 
This step is described in Algorithm 2. 
 

Algorithm 2. The algorithm of revising the decrypted sequences. 

Input: PLUS, MINUS, both are sequences. 

Output: PLUS, MINUS, two revised values, both are sequences. 

Begin 

1. For each group gplus∈PLUS and gminus∈MINUS, decrypt gplus, gminus. 

2. Tplus←PLUS, Tminus←MINUS;            /* Transform sequences into DoubleLisTree structures. */ 

3. Cplus=∅, Cminus=∅;                             /* Cplus and Cminus represent the carry. */ 

4. For each node nplus∈Tplus and nminus∈Tminus, do the following operations: 

(i). nplus←nplus+Cplus, nminus←nminus+Cminus;                      /* Get the revised values. */ 

(ii). Cplus←nplus/10
S
, Cminus←nminus/10

S
;                             /* Set the carry. */ 

(iii). nplus←nplus%10
S
, nminus←nminus%10

S
;                          /* Set the revised values of nodes. */ 

5. Loop Cplus, Cminus: if Cplus>0, Cminus>0, a new node nplus, nminus. 

(i). nplus←Cplus%10
S
, nminus←Cminus%10

S
;                         /* Set the value of new node. */ 

(ii). Cplus←Cplus/10
S
, Cminus←Cminus/10

S
;                            /* Get the new value of carry. */ 

(iii). ROOTplus←ROOTplus+1, ROOTminus←ROOTminus-1;  /* Set the new value of root node. */ 

6. PLUS←Tplus, MINUS←Tminus;                                            /* Traverse the trees to sequences. */ 

7. Return PLUS, MINUS; 

End 

 

Adding the summation of all positive floating-point numbers and the summation of all negative 
yields the final result of SUM aggregate. In order to keep the precision of floating points, the last 
addition step is executed by DoubleListTree and applied the coding scheme in Section 3.1 and addition 
rules in Section 3.2. The code of the negative sum is adjusted and later addition is completed meanwhile 
the group sum is revised. The detailed process is as Algorithm 3. 
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Algorithm 3. The algorithm of the final addition. 

Input: A, a positive sequence; B, a negative sequence. 

Output: C, the final result, a floating-point number. 

Begin 

1. TA←A, TB←B;          /* Transform sequences into DoubleLisTree structures. */ 

2. C=∅, CS=∅, Borrow=∅;         /* CS is a sequence and Borrow represents the borrow. */ 

3. For each node nB∈TB, nB←10
S
 -nB;     /* Adjust each node to satisfy the negative coding 

scheme. */ 

3.1 Let root nodes rA, rB in TA, TB compare rA-193 with 62-rB to decide whether the result is 

positive or negative. 

3.2 For each node nA∈TA, nB∈TB from the leaf to root of right subtrees and from root to leaf of 

left subtrees followed, do the following operations: 

3.2.1 If the result is positive, 

(i). nA←nA+nB+Borrow;                           /* Get the new value of node. */ 

(ii). If nA≥10
S
, nA←nA-10

S
;                         /* Set the new value of node. */ 

(iii). If nA<10
S
, 1←Borrow;                        /* Set the borrow. */ 

3.2.2 If the result is negative, 

(i). nB←nA+nB+Borrow;                           /* Get the new value of node. */ 

(ii). If nB>10
S
, nB←nB-10

S
, 1←Borrow;    /* Set the new value of node and the borrow. */ 

4. If the result is positive, CS←TA;                          /* Traverse the tree to sequence. */ 

5. If the result is negative, CS←TB; 

6. C←CS;                                                /* Decode the sequence to a floating-point number. */ 

7. Return C. 

End 
 
 

5. Performance Analysis 

For performance analysis, we mainly analyze time consumption here. The time is mainly consumed in 
summing the encrypted data in cloud and decrypting sequence and performing the final result in proxy. 
The coding scheme theoretically supports arbitrary decimal digits due to the infinite range of tag value. 

We implemented encoding, encryption, decryption, revision, adjustment and decoding of the 
floating-points in proxy, and a UDF representing SUM aggregate function on MySQL 5.5 database. The 
proxy library and the server-side UDFs are implemented in approximately 2,600 lines of C. We use 
GMP for multiple precision numerical arithmetic. 

The experimental proxy and the server are all running on a Pentium Dual-Core E5300 2.6 GHz 
processor, 2.50 GB memory and Ubuntu Server 14.04 LTS operation system. Here, we set N to 10 and S to 2 
for experiment, we stored the corresponding plaintexts in database as an experimental comparison as well. 

The original data are encoded and encrypted in proxy, and several examples are depicted in Table 4, 
and then Table 5 illustrates both the results in database and other data that are being decrypted, revised, 
adjusted and decoded in proxy. 

We firstly execute the query with SUM aggregate directly on all columns stored as plaintext values. 
The time to execute under this scenario is denoted as Tplain. Then we execute the same query on 
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encrypted data, and use Tcipher to denote the execution time. The radio Tcipher/Tplain captures the degree to 
which the solution slows down the entire query processing time. We use a large number of data to 
record the time consumption in each case and the radio. The time consumption in different amount of 
participation are shown in Fig. 4 respectively and the trend of radio is presented in Fig. 5. We observe 
that it introduces a 11 times slowdown of the entire query processing time, which is affected by various 
factors, wherein the source code can be further optimized, and the improvement of experimental 
environment can reduce performance influence caused by processing the floating points in such a way. 

 
Table 4. Several examples processed in proxy 

Original Encoded Encrypted 

8264.241 194#82#64#24#10 
194#7173553566423205903#4463318601723239731#425006031

8257300145#2830802455128342452 

93.7 193#93#70 193#2844081191798098093#88107619854274647 

-30.82 062#30#82 062#925449142367273198#2927639092951954747 

-5.334 062#05#33# 40 
062#4272571384099659125#6458778131515620141#733276693

7278102523 

1750.4092 194#17#50# 40#92 194#3818429545746992831#2676434521045999374#189091769
3032427186#7346519691564791194 

-193.0382 061#01#93# 03#82 
061#5360938982134324357#7807270477872491981#105927647

960703200#6131749293822456217 
 

Table 5. Results processed in server and other corresponding data 
 Sum Decrypted Revised Adjusted Decoded 

Plus 
194#2921298152900244078#78035
87025291817816#10221924887790

64550#2543484522585792288 

194#99#207#134
#102 

195#01#01#08
#35#02 

195#01#01#08
#35#02 

10108.3502 

Minus 
061#5360938982134324357#51883
84085972111174#50296295211382

0697#646768574441873443 

061#01#128#118
#122 

061#02#29#19
#22 

061#98#71#81
#78 -229.1922 

Total    194#98#79#15
#80 

9879.1580 

 

 

Fig. 4. The time consumption. 
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Fig. 5. Tcipher/Tplain. 
 
 

6. Conclusions 

In this paper, we mainly discussed query with SUM aggregate function on encrypted floating-point 
numbers in cloud without decryption in advance. In order to enable encrypting the floating points and 
summing followed, a coding scheme is proposed to hide the decimal points and the positive or negative 
signs. A floating-point number is divided into groups by preset length and each group is encrypted by 
homomorphic encryption algorithm Paillier in proxy, then all groups combine as a sequence to be 
stored in cloud database. We call a UDF to implement the SUM aggregate function on encrypted 
database without revealing the data itself, where we apply a data structure of DoubleListTree to 
accomplish addition. The summation results of the positive and the negative are sent to proxy, followed 
by decryption, revision, adjustment, and then do the final addition, later the result is decoded as the 
final result. Our research can serve as a supplement to CryptDB.  

In our research, we mainly discuss query with SUM aggregate function over floating point data type, 
and it is inadequate to query floating-point numbers. More complex queries on encrypted database will 
be further explored in more detail. 
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