• Title/Summary/Keyword: double coating

Search Result 189, Processing Time 0.037 seconds

Development of New Hybrid Technique of Protective Finishing for the Prevention of Deterioration in Concrete Structures (콘크리트 구조물의 열화방지를 위한 보호마감 복합화 신기술의 개발)

  • 하기주;최민권;신종학;김기태;홍호용;이영범
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.739-744
    • /
    • 2001
  • In this study, experimental research was carried out to develop protective finishing, coating materials and new hybrid technique for deteriorating prevention and high durability in concrete structures. It had sufficiently recommended performance for the protective finishing method of concrete structures through testings. This is more progressive double membrane method than single membrane type designed by conventional method. It was found that this hybrid construction method had very excellent performance to improve the durability of existing concrete structures and attain the beauty of concrete structures.

  • PDF

Electrical and Optical Properties of F-Doped SnO2 Thin Film/Ag Nanowire Double Layers (F-Doped SnO2 Thin Film/Ag Nanowire 이중층의 전기적 및 광학적 특성)

  • Kim, Jong-Min;Koo, Bon-Ryul;Ahn, Hyo-Jin;Lee, Tae-Kun
    • Korean Journal of Materials Research
    • /
    • v.25 no.3
    • /
    • pp.125-131
    • /
    • 2015
  • Fluorine-doped $SnO_2$ (FTO) thin film/Ag nanowire (NW) double layers were fabricated by means of spin coating and ultrasonic spray pyrolysis. To investigate the optimum thickness of the FTO thin films when used as protection layer for Ag NWs, the deposition time of the ultrasonic spray pyrolysis process was varied at 0, 1, 3, 5, or 10 min. The structural, chemical, morphological, electrical, and optical properties of the double layers were examined using X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, the Hall effect measurement system, and UV-Vis spectrophotometry. Although pure Ag NWs formed isolated droplet-shaped Ag particles at an annealing temperature of $300^{\circ}C$, Ag NWs covered by FTO thin films maintained their high-aspect-ratio morphology. As the deposition time of the FTO thin films increased, the electrical and optical properties of the double layers degraded gradually. Therefore, the double layer fabricated with FTO thin films deposited for 1 min exhibited superb sheet resistance (${\sim}14.9{\Omega}/{\Box}$), high optical transmittance (~88.6 %), the best FOM (${\sim}19.9{\times}10^{-3}{\Omega}^{-1}$), and excellent thermal stability at an annealing temperature of $300^{\circ}C$ owing to the good morphology maintenance of the Ag NWs covered by FTO thin films.

Electrochemical Characteristics of Metal Coated Graphite for Anodic Active Material of Lithium Secondary Battery (금속 코팅된 흑연 입자로 제조된 전극의 전기화학적 특성)

  • Choi, Won-Chang;Lee, Joong-Kee;Byun, Dong-Jin;Cho, Byung-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.2
    • /
    • pp.103-112
    • /
    • 2003
  • Various kinds of metals were coated on synthetic graphite in order to investigate the relationship between film characteristics and their electrochemical performance. Gas suspension spray coating method was employed for the coating of synthetic graphite. In our experimental range, all of the metal coated synthetic graphite showed the higher capacity than that of raw material at high C-rate mainly due to decrease in impedance of passivation film. In cyclic voltammetry experiments, silver-coated and tin-coated graphite anodes found the lithium-alloy reaction. Considering smaller amount of metal coating, the most increase in discharge capacity was caused by improvement of conductivity of the electrode. When single-component metal was coated, silver-coated graphite anode exhibited the highest discharge capacity and better cycleability. Double components of silver-nickel coated active material showed the highest discharge capacity, rate capability and the best cycle performance in the range of our experiments.

Double-layered Polymer Electrolyte Membrane based on Sulfonated Poly(aryl ether sulfone)s for Direct Methanol Fuel Cells (직접 메탄올 연료전지용 술폰화 폴리아릴에테르술폰 이중층 고분자 전해질 막의 제조 및 특성)

  • Hong, Young-Taik;Ko, Ha-Na;Park, Ji-Young;Choi, Jun-Kyu;Kim, Sang-Un;Kim, Hyung-Joong
    • Membrane Journal
    • /
    • v.19 no.4
    • /
    • pp.291-301
    • /
    • 2009
  • Double-layered polymer electrolyte membranes were prepared from two different sulfonated poly(aryl ether sulfone) copolymers by the two-step solution casting method for direct methanol fuel cells (DMFC). Sulfonation degrees were adjusted 10% (SPAES-10) and 50% (SPAES-50) by controlling monomer ratios, and the weight ratios of SPAES-10 copolymer were varied in the range of 5~20% to investigate the effect of thickness of coating layers on the membranes. Proton conducting layers were fabricated from SPAES-50 solutions of N-methyl-2-pyrrolidone (NMP) by a solution casting technique, and coating layers formed on the semiliquid surface of the conducting layer by pouring of SPAES-10-NMP solutions onto. It was found that double-layered polymer electrolyte membrane could significantly reduce the methanol crossover through the membrane and maintain high proton conductivities being comparable to single-layered SPAES-50 membrane. The maximum power density of membrane-electrolyte assembly (MEA) at the condition of $60^{\circ}C$ and 2 M methanol-air was $134.01\;mW/cm^2$ for the membrane prepared in the 5 wt-% of SPAES-10 copolymer, and it was corresponding to the 105.5% of the performance of the commercial Nafion 115 membrane.

Effects of Paper Bag Coated Calcium on the Calcium Concentration, Lenticel Development, and Quality in 'Chuhwangbae' Pear Fruits (칼슘이 코팅된 봉지 괘대가 '추황배' 과실의 칼슘함량, 과점 발달 및 과실품질에 미치는 영향)

  • Choi, Jin-Hoo;Choi, Jang-Jeon;Lee, Jung-Sup;Moon, Byung-Woo;Choi, Cheol;Nam, Ki-Woong;Um, Moon-Il
    • Journal of Bio-Environment Control
    • /
    • v.17 no.4
    • /
    • pp.312-318
    • /
    • 2008
  • In a pear fruit 'Chuhwangbae' was investigated the effect of the calcium-coated double paper bag on the physical properties of the paper bag, micro meteorological phenomena, and calcium contents in quality of fruit. The calcium-coated paper bag, compared with official paper bags, did not give any effect on light transmission ratio and tensile strength. The change of the inside relative humidity of the paper bag was a little compared with conventional paper bags, but there was no difference in temperature. The contents of the accumulated calcium of the pericarp was remarkably greater than conventional paper bags during the period of 65 days to 160 days after the full bloom, but the flesh remarkably increased at 160 days. The calcium content per concentration of calcium coating greatly increased in 12% of yellow double paper bags and 9, 12% of newspaper double paper bags in case of the pericarp, and in 3% of yellow double paper bags and 6, 9, 12% of newspaper double paper bags in case of the pericarp. As a result of treatment of a radioactive isotope, the amount of accumulated calcium in the pericarp continued until 60 hours after treatment, but there was no difference in the calcium amount between the flesh and no-treatment pericarp. As to the hardness of fruits at the time of harvest, there was no difference in the concentration in case of a yellow double bags. But newspaper double paper bags 6, 12% was significantly difference. Soluble solid remarkably increased in yellow double paper bags 6, 9% and yellow double paper bags 3, 6, 9%. Also, it did not effect on changes of the pericarp, fruit weight and the color of the pericarp.

Synthesis of Manganese Hydrogen Phosphate Hydrate by Controlled Double-jet Precipitation (더블제트 침전법에 의한 제이인산망간염 수화물의 새로운 합성 방법)

  • Kim, Won-Seok;Kang, Yong;Kim, Yeong-Cheol
    • Applied Chemistry for Engineering
    • /
    • v.19 no.1
    • /
    • pp.66-72
    • /
    • 2008
  • Manganese hydrogen phosphate hydrate, $MnHPO_4{\cdot}2.25H_2O$, is a major constituent of the pre-conditioning compositions for the manganese phosphate coating treatment over carbon steel substrate. This compound is conventionally produced by the synthesis in the aqueous solution process followed by the filtration and drying processes and a series of size reduction and classification processes in dry state. However, it is evident that the conventional process is neither environment-friendly nor cost-effective. In this work, a new process principle was examined based on the controlled double-jet precipitation technology to produce the manganese chemical product of fairly uniform particle size distribution in an aqueous solution media. The effects of stabilizing agents were comparatively studied by the scanning electron microscope analysis in a uniformity point of view of the resulting particle size. Polyvinylpyrrolidone and Gum Arabic were excellent in controlling the crystal growth step, resulting in fairly uniform size distributions of the particles from the controlled double-jet process.

The Effects of Hot Corrosion on the Creep Rupture Properties of Boiler Tube Material (보일러 管材料의 크리프破斷特性에 미치는 고온부식의 影響)

  • 오세욱;박인석;강상훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.236-242
    • /
    • 1989
  • In order to investigate the effects of hot corrosion on the creep rupture properties and creep life of 304 stainless steel being used as tube materials of heavy oil fired boiler, the creep rupture tests were carried out at temperature 630.deg.C, 690.deg.C and 750.deg.C in static air for the specimens with or without coating of double layer corrosives according to the new hot corrosion test method simulating the situation commonly observed on superheater tubes of the actual boiler. The double layer corrosives are 85% V$_{2}$O$_{5}$ + 10% Na$_{2}$So$_{4}$ + 5% Fe$_{2}$O$_{3}$ as the inner layer corrosive being once melted at 900.deg. C and crushed to powder, and 10% V$_{2}$O$_{5}$ + 85% Na$_{2}$SO$_{4}$ +5% Fe$_{2}$O$_{3}$ as the outer layer corrosive. As results, in the specimen coated with the double layer corrosives, the rupture strength was extremely lowered and showed a large difference each other. The rupture ductility also lowered remarkably as a result of the brittle fracture mode due to hot corrosion. These results indicate that hot corrosion could essentially alter the creep fracture mechanism. From the metallographic observation, it was clarified that the rupture life of 304 stainless steel subjected to hot corrosion was chiefly determined by the behavior of the aggressive intergranular penetration of sulfides.des.

Numerical Analysis of Deformation Characteristics in the Double-Layer Liner According to Explosive Material Distribution (이중층 라이너에서 폭발 재료 분포에 따른 변형 특성 수치해석)

  • Mun, Sang Ho;Kim, See Jo;Lee, Chang Hee;Lee, Seong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.618-628
    • /
    • 2016
  • The development of new concepts of liners is required in order to effectively neutralize the enemy's attack power concealed in the armored vehicles. A multiple-layer liner is one of possibilities and has a mechanism for explosion after penetrating the target which is known as "Behind Armor Effect." The multiple-layer explosive liner should have sufficient kinetic energy to penetrate the protective structure and explosive material react after target penetration. With this in mind, double-layer liner materials were obtained by cold spray coating methods and these material properties were experimentally characterized and used in this simulation for double-layer liners. In this study, numerical simulations in the three different layer types, i.e., single, A/B, A/B/A in terms of the layer location were verified in terms of finite element mesh sizes and numerical results for the jet tip velocity, kinetic energy, and the corresponding jet deformation characteristics were analysed in detail depending on the structure of layer types.

MICROSTRUCTURE AND TRIBOLOGY OF $TiB_2$ AND $TiB_2$-TiN DOUBLE-LAYER COATINGS

  • Yang, Yunjie;Chen, Lizhi;Zheng, Zhihong;Wang, Xi;Liu, Xianghuai
    • Journal of the Korean Vacuum Society
    • /
    • v.4 no.S2
    • /
    • pp.40-48
    • /
    • 1995
  • $TiB_2$-TiN double-layer coating have been prepared by ion beam enhanced deposition. AES, XRD, TEM and HRTEM were employed to characterize the $TiB_2$ layer. The microhardness of the coatings was evaluated by an ultra low-load microhardness indenter system, and the tribological behavior was examined by a ball-on-disc tribology wear tester. It was found that in a single titanium diboride layer, the composition is uniform along the depth of the film, and it is mainly composed of nanocrystalline $TiB_2$ with hexagonal structure, which resulted from the ion bombardment during the film growth. The hardness of the $TiB_2$ films increases with increasing ion energy, and approaches a maximum value of the $TiB_2$ films increases with increasing ion energy, and approaches a maximum value of 39 Gpa at ion energy of 85 keV. The tribological property of the TiB2 films is also improved by higher energy of 85keV. The tribological property of the $TiB_2$ films is also improved by higher energy ion beam bombardment. There is no major disparity in the mechanical properties of double-layer $TiB_2$/TiN coatings and TiN/$TiB_2$ coatings. Both show an improved wear resistance compared with single-layer $TiB_2$ films. The adhesion of double-layer coatings is also superior to that of single-layer films.

  • PDF