• 제목/요약/키워드: double bond

검색결과 334건 처리시간 0.024초

PAPER-TO-PAPER FRICTION CAUSED BY WOOD EXTRACTIVES ON THE PAPER SURFACE IS DETERMINE BY LENGTH AND ORDER OF THE HYDROCARBON CHAINS

  • Nilvebrant, Nils-Olof;Niklas Garoff;Christer Fellers
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 1999년도 Proceedings of Pre-symposium of the 10th ISWPC
    • /
    • pp.204-208
    • /
    • 1999
  • Friction was measured on filter paper sheets impregnated with model compounds representing wood extractives using an apparatus based on the horizontal plane principle. The best lubrication of paper surfaces was achieved when they were completely separated by a densely packed film of saturated long-chain amphophilic molecules, such as fatty acids. The fatty acids adsorbed with their polar ends on the paper surface, causing their hydrocarbon chaine to be orientated perpendicularly to the paper surface. The saturated C18-acid, stearic acid, was an efficient lubricator for paper surfaces. The introduction of a double bond in stearic acid eliminated its lubricating ability. The spatial length of the lubricating fatty acid thereby decreases from 24${\AA}$ to 11${\AA}$. However the transisomer of oleic acid, elidic acid, had the ability to lower friction due to an increased spatial length of the fatty acid. Both the spatial length of the hydrocarbon chain and the number of lubricating chains may be of importance for the paper-to-paper friction caused by wood extractives. A hydrophilic head-graup in the wood extractive and an ordered molecular layer of lubricating molecules seems also to be prerequisites for efficient lubrication. A chemical weak boundary layer between the paper sheets was suggested to cause the low friction when long chain saturated fatty acids were deposited on paper.

마이크로 라만을 사용한 실리콘 아크릴레이트가 광중합 반응에 미치는 영향 관찰 (Observation of the silicon acrylate effect on the photo-polymerization reaction using micro raman spectroscopic technique)

  • 오향림;홍진후;유정아
    • 분석과학
    • /
    • 제17권3호
    • /
    • pp.225-229
    • /
    • 2004
  • UV 경화반응에 의하여 형성된 코팅의 성질을 향상시키기 위하여 첨가제로 사용한 실리콘 아크릴레이트가 광중합 반응에 미치는 영향을 마이크로 라만 분광법을 사용하여 관찰하였다. 광중합 반응의 반응체는 아크릴계 올리고머와 모노머를 사용하였으며 광 개시제로는 Darocur 1173을 사용하였다. 첨가제 실리콘 아크릴레이트는 광 경화 수지에 각각 0-3 wt% 첨가하였으며, UV를 조사하여 중합 반응시킨 후 공기-박막 경계면으로부터 두께에 따른 라만 스펙트럼을 관찰하였다. 광중합 반응의 진행정도는 1410과 $1635cm^{-1}$에 나타나는 중합에 직접 관여하는 아크릴기 ($-C=CH_2$)와 관련된 띠의 세기로부터 구하였다. 관찰된 결과에 따르면 마이크로라만으로부터 얻은 심도 스펙트럼 (depth profile)은 두께에 따른 경화반응의 진행 정도를 관찰할 수 있을 뿐만 아니라 경화 반응에 미치는 여러 요인에 대한 이해를 돕는 좋은 방법이 될 수 있음을 알 수 있다.

Isolation of a Natural Antioxidant, Dehydrozingerone from Zingiber officinale and Synthesis of lts Analogues for Recognition of Effective Antioxidant and Antityrosinase Agents

  • Kuo, Ping-Chung;Damu, Amooru G.;Cherng, Ching-Yuh;Jeng, Jye-Fu;Teng, Che-Ming;Lee, E-Jian;Wu, Tian-Shung
    • Archives of Pharmacal Research
    • /
    • 제28권5호
    • /
    • pp.518-528
    • /
    • 2005
  • In the present study, the antioxidative and inhibitory activity of Zingiber officinale Rosc. Rhizomes-derived materials (on mushroom tyrosinase) were evaluated. The bioactive co mponents of Z. officinale rhizomes were characterized by spectroscopic analysis as zingerone and dehydrozingerone, which exhibited potent antioxidant and tyrosinase inhibition activities. A series of substituted dehydrozingerones [(E)-4-phenyl-3-buten-2-ones] were prepared in admirable yields by the reaction of appropriate benzaldehydes with acetone and the products were evaluated in terms of variation in the dehydrozingerone structure. The synthetic analogues were examined for their antioxidant and antityrosinase activities to probe the most potent analogue. Compound 26 inhibited Fe$^{2+}$-induced lipid peroxidation in rat brain homogenate with an IC$_{50}$ = 6.3${\pm}$0.4 ${\mu}$M. In the 1,1-diphenyl- 2-picrylhydrazyl (DPPH) radical quencher assay, compounds 2, 7, 17, 26, 28, and 29 showed radical scavenging activity equal to or higher than those of the standard antioxidants, like ${\alpha}$-tocopherol and ascorbic acid. Compound 27 displayed superior inhibition of tyrosinase activity relative to other examined analogues. Compounds 2, 17, and 26 exhibited non-competitive inhibition against oxidation of 3,4- dihydroxyphenylalanine (L-DOPA). From the present study, it was observed that both number and position of hydroxyl groups on aromatic ring and a double bond between C-3 and C-4 played a critical role in exerting the antioxidant and antityrosinase activity.

Flavonoids as Substrates of Bacillus halodurans O-Methyltransferase

  • Jeong, Ki-Woong;Lee, Jee-Young;Kang, Dong-Il;Lee, Ju-Un;Hwang, Yong-Sic;Kim, Yang-Mee
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권7호
    • /
    • pp.1311-1314
    • /
    • 2008
  • Bacillus halodurans O-methyltransferase (BhOMT) is an S-adenosylmethionine dependent methyltransferase. In our previous study, three dimensional structure of the BhOMT has been determined by comparative homology modeling and automated docking study showed that two hydroxyl groups at 3'- and 4'-position in Bring and structural rigidity of C-ring resulting from the double bond characters between C2 and C3 of flavonoid, were key factors for interaction with BhOMT. In the present study, BhOMT was cloned and expressed. Binding assay was performed on purified BhOMT using fluorescence experiments and binding affinity of luteolin, quercetin, fisetin, and myricetin were measured in the range of $10^7$. Fluorescence quenching experiments indicated that divalent cation plays a critical role on the metal-mediated electrostatic interactions between flavonoid and substrate binding site of BhOMT. Fluorescence study confirmed successfully the data obtained from the docking study and these results imply that hydroxyl group at 7-position of luteolin, quercetin, fisetin, and myricetin forms a stable hydrogen bonding with K211 and carboxyl oxygen of C-ring forms a stable hydrogen bonding with R170. Hydroxyl group at 3'-and 4'-position in the B-ring also has strong $Ca^{2+}$ mediated electrostatic interactions with BhOMT.

리빙라디칼 중합법을 포함한 화학적 방법에 의한 고무의 개질 (Modification of Rubbers through Chemical Reactions including Controlled/"living" Radical Polymerization Techniques)

  • 주상일;조현철;이상훈;홍성철
    • Elastomers and Composites
    • /
    • 제44권2호
    • /
    • pp.122-133
    • /
    • 2009
  • 고무는 천연 고무를 비롯하여 부타디엔 고무, 스티렌-부타디엔 고무, 니트릴-부타디엔 고무, EPDM, 염소화 고무 등 산업적 요구에 따라 발전하여 왔다. 광범위한 분야에서 고무가 사용됨에 따라 새로운 물성을 갖는 합성 고무나 개질 고무의 생산이 필요하게 되었다. 본 리뷰 논문에서는 이중 결합을 포함하는 고무의 화학적 개질을 통하여 고무의 구조를 변화시키거나, 관능기, 이종 고분자 등을 도입하는 몇 가지 방법들에 대하여 정리해 보고자 한다. 특히, 최근에 많은 응용이 시도되고 있는 리빙 라디칼 중합법에 의한 고무의 개질을 소개하고 이의 효과를 알아보고자 한다.

Exploration of Essential Structure of Malloapelta B for the Inhibitory Activity Against TNF Induced $NF-{\kappa}B$ Activation

  • Luu, Chinh Van;Chau, Minh Van;Lee, Jung-Joon;Jung, Sang-Hun
    • Archives of Pharmacal Research
    • /
    • 제29권10호
    • /
    • pp.840-844
    • /
    • 2006
  • For the exploration of pharmacophoric moiety of malloapelta B (1) possessing the inhibitory activity of $NF-{\kappa}B$ activation, structural variation of ${\alpha},{\beta}-unsaturated$ carbonyl motif was attempted. 1 was reduced by catalytic hydrogenation, sodium borohydride, and lithium aluminumhydride. Catalytic hydrogenation with 30 psi or 15 psi of $H_2$ gas of 1 generated 8-butyl-5,7-dimethoxy-2,2-dimethylchroman (2) and 1-(5,7-dimethoxy-2,2-dimethylchroman-8-yl)butan-1-one (3), respectively. Reduction with sodium borohydride occurred at the double bond of ${\alpha},{\beta}-unsaturated$ ketone of 1 to give 1-(5,7-dimethoxy-2,2-dimethyl-2H-chromen-8-yl)butan-1-one (4). Reduction of 1 with lithium aluminumhydride and then quenched with methanol and water produced unexpected products, 1-(5,7-dimethoxy-2,2-dimethyl-2H-chromen-8-yl)-3-methoxy-1-butene (5) and 1-(5,7-dimethoxy-2,2-dimethyl-2H-chromen-8-yl)-3-hydroxy-1-butene (6). These are formed from the isomerization of initial product 9 through the continuous conjugate carbocation intermediate 11. Addition of ethylmagnesium bromide and dimethyl malonate anion to 1 gave the conjugate adducts 7 and 8. Ethylmagesium bromide and sodium borohydride reduction unusually gave the conjugate addition due to steric congestion around carbonyl group of 1. Compound 2 exhibits the reduced inhibitory activity against $NF-{\kappa}B$ activation and the others do not show the activity. Therefore ${\alpha},{\beta}-unsaturated$ carbonyl group of 1 should be important for its inhibitory activity.

Magnetic Exchange Interactions in a 2D Grid-like Copper(II) Polymer with Bridging End-on Cyanato and Pyrazine Ligands: A DFT Study

  • Kang, Dae-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권6호
    • /
    • pp.1704-1710
    • /
    • 2010
  • The structure of a 2D grid-like copper(II) complex [Cu$(NCO)_2$(pyz)](pyz=pyrazine) (1) consists of 1D chains of Cu-pyz units connected by double end-on (EO) cyanato bridges. Each Cu(II) ion has a distorted octahedral coordination, completed by the four EO cyanato and two pyrazine ligands. Magnetic interactions through EO cyanato and pyrazine bridges in 1 are discussed on the basis of DFT broken-symmetry calculations at the B3LYP level. For model dicopper(II) complexes I (bridged by cyanato) and II (bridged by pyrazine), electronic structure calculations reproduce very well the experimental couplings for the S = 1/2 ferromagnetic and antiferromagnetic exchange-coupled 2D system: the calculated exchange parameters J are +1.25 $cm^{-1}$ and -3.07 $cm^{-1}$ for I and II, respectively. The $\sigma$ orbital interactions between the Cu $x^2-y^2$ magnetic orbitals and the nitrogen lone-pair orbitals of pyrazine are analyzed from the viewpoint of through-bond interaction. The energy splitting of 0.106 eV between two SOMOs indicates that the superexchange interaction should be antiferromagnetic in II. On the other hand, there are no bridging orbitals that efficiently connect the two copper(II) magnetic orbitals in I because the HOMOs of the basal-apical NCO bridge do not play a role in the formation of overlap interaction pathway. The energy separation in the pair of SOMOs of I is calculated to be very small (0.054 eV). This result is consistent with the occurrence of weakly ferromagnetic properties in I.

카르복실화 스티렌-부타디엔 라텍스의 중합시간 단축과 안정성 개선을 위한 연구 (Study for Reducement of Polymerization Time and Improvement of Stability in Manufacturing Carboxylated Styrene-butadiene Latex)

  • 조을룡
    • Elastomers and Composites
    • /
    • 제37권1호
    • /
    • pp.31-38
    • /
    • 2002
  • 카르복실화 스티렌-부타디엔 라텍스의 중합시간은 사용되는 부타디엔 모노머가 공액 이중결합을 가진 화학적 구조로 인하여 라디칼 중합시 홀 전파의 비편재화로 인해 아크릴 에멀젼의 제조시 보다 중합시간이 매우 길다. 또한 라텍스 자체가 고분자와 분산매의 분리 없이 사용되기 때문에 라텍스의 안정성은 대단히 중요하다. 물성의 저하없이 반응시간을 단축하기 위하여 기존에 사용하던 연쇄이동제인 사염화탄소 대신 tert-dodecylmercaptane 과 ${\alpha}$-methylstyrene dimer를 혼합 사용하여 반응시간을 14시간에서 12시간으로 줄일 수 있었다. 반응 성장단계에서 아크릴산의 투입량을 0.3 part로 제한하여 라텍스의 점도 상승을 막고 초기중합단계 직후에 아크릴아미드를 0.1 part 첨가하여 라텍스 입자의 내부영역과 외부영역의 고분자 사슬의 상호간확산을 막아 단단하면서도 접착력을 유지할 수 있는 라텍스의 합성 결과를 얻었다.

From L-Ascorbic Acid to Protease Inhibitors: Practical Synthesis of Key Chiral Epoxide Intermediates for Aspartyl Proteases

  • Chang, Sun-Ki;So, Soon-Mog;Lee, Sang-Min;Kim, Min-Kyu;Seol, Kyoung-Mee;Kim, Sung-Min;Kang, Jae-Sung;Choo, Dong-Joon;Lee, Jae-Yeol;Kim, B.-Moon
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권7호
    • /
    • pp.2213-2218
    • /
    • 2012
  • Efficient synthetic routes were developed to prepare a sizable amount (4-15 grams) of the chiral epoxides 4-6 as versatile intermediates for the synthesis of aspartyl protease inhibitors of therapeutic interest such as HIV protease and ${\beta}$-secretase. Oxidative cleavage of the C(2)-C(3) double bond of L-ascorbic acid followed by functional group manipulation led to the preparation of the epoxide 10, which was opened with an azide to yield a common aziridine intermediate 12. Through opening of the aziridine ring of 12 with either a carbon or a sulfur nucleophile, chiral epoxide precursors 4-6 could be prepared for various HIV protease inhibitors. Except for the final low melting epoxides 5 and 6, all intermediates were obtained as crystalline solids, thus the synthetic pathway can be easily applied to a large-scale synthesis of the chiral epoxides.

Inversion Barriers of Methylsilole and Methylgermole Monoanions

  • Pak, Youngshang;Ko, Young Chun;Sohn, Honglae
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권12호
    • /
    • pp.4161-4164
    • /
    • 2012
  • Density functional MO calculations for the methylsilole anion of $[C_4H_4SiMe]^-$ and methylgermole anion of $[C_4H_4SiMe]^-$ at the B3LYP (full)/6-311+$G^*$ level (GAUSSIAN 94) were carried out and characterized by frequency analysis. The ground state structure for the methylsilole anion and methylgermole anion is that the methyl group is pyramidalized with highly localized structure. The difference between the calculated $C_{\alpha}-C_{\beta}$ and $C_{\beta}-C_{\beta}$ distances are 9.4 and 11.5 pm, respectively. The E-Me vector forms an angle of $67.9^{\circ}$ and $78.2^{\circ}$ with the $C_4E$ plane, respectively. The optimized structures of the saddle point state for the methylsilole anion and methylgermole anion have been also found as a planar with highly delocalized structure. The optimized $C_{\alpha}-C_{\beta}$ and $C_{\beta}-C_{\beta}$ distances are nearly equal for both cases. The methyl group is located in the plane of $C_4E$ ring and the angle between the E-Me vector and the $C_4E$ plane for the methylsilole anion and methylgermole anion is $2.0^{\circ}$ and $2.3^{\circ}$, respectively. The energy difference between the ground state structure and the transition state structure is only 5.1 kcal $mol^{-1}$ for the methylsilole anion. However, the energy difference of the methylgermole anion is 14.9 kcal $mol^{-1}$, which is much higher than that for the corresponding methylsilole monoanion by 9.8 kcal $mol^{-1}$. Based on MO calculations, we suggest that the head-to-tail dimer compound, 4, result from [2+2] cycloaddition of silicon-carbon double bond character in the highly delocalized transition state of 1. However, the inversion barrier for the methylgermole anion is too high to dimerize.