• Title/Summary/Keyword: double bed

Search Result 77, Processing Time 0.03 seconds

Variations of Adsorption Characteristics of Binary Vapor According to Packing System of Double-layer Adsorption Bed (2중층 흡착층의 충전방법에 따른 2성분 증기의 흡착특성 변화)

  • Lee, Min-Gyu;Lee, Song-Woo;Kam, Sang-Kyu;Lee, Seok-Hee
    • Journal of Environmental Science International
    • /
    • v.21 no.3
    • /
    • pp.305-312
    • /
    • 2012
  • This work is to study the variations of adsorption characteristics of binary vapor according to packing system of double-layer bed by fixed bed experiment. Breakthrough curves of single and binary vapor composed of acetone and benzene on single-layer and double-layer adsorption bed composed of activated carbon (AC) and silica-aluminar (SA) were compared. Adsorptions of binary vapor on double-layer bed were influenced by the differences of surface area between adsorbents as well as the polarity difference between adsorbent and adsorbate. The roll-up phenomenon of acetone vapor was happened by replacement with competing adsorption between acetone vapor and benzene vapor on AC bed, but it was not happened on SA bed because acetone vapor and benzene vapor had less difference in affinity with SA bed. The breakthrough times of acetone vapor and benzene vapor on AC/SA double-layer bed were three times and 1.4 times larger respectively than on SA/AC double-layer bed, the differences of breakthrough times were relatively larger than the equilibrium adsorption capacities according to packing system of double-layer bed.

Study on Enhancement of Magnetic Contact Forces between Iron Bed and Back Yoke in Electric Motor (대형 전동기에서의 영구자석 철 받침대와 요크 간의 전자기 결합력 향상에 관한 연구)

  • Kwon, Oh-Gyu;Kim, Gui-Hwan;Choi, Hong-Soon
    • Journal of the Korean Magnetics Society
    • /
    • v.26 no.6
    • /
    • pp.206-212
    • /
    • 2016
  • The shape of a iron bed supporting a permanent magnet in a large-sized motor is a important factor for determining the coupling strength with the yoke. In a large-sized motor, there is a difference in electromagnetic force with the yoke depending on the shape of the iron bed. In this paper, we show the differences and problems by calculating the electromagnetic force between the double bed and the single bed through the virtual air gap, and show that the single bed is superior in terms of the binding force. It is also shown that the binding force between the bed and the yoke is improved by carving the groove shape under the bed.

Development of a Particle Bed Heat Exchanger(I) -An Experimental Study on Heat Transfer Characteristics of Fluidized Bed Heat Exchanger with Double Pipe (Counterflow) (입자층(粒子層)을 이용(利用)한 열교환기(熱交換器) 개발(開發)에 관(關)한 연구(硏究)(I) - 유동층형(流動層形) 이중관식(二重管式) 열교환기(熱交換器)의 전열특성(傳熱特性)에 대한 실험적(實驗的) 연구(硏究) (대향류식(對向流式)))

  • Lim, J.G.;Yoo, J.O.;Yang, H.J.;Seo, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.2
    • /
    • pp.119-126
    • /
    • 1990
  • In this study, the overall heat transfer coefficients are calculated on fluidized bed double pipe heat exchanger and single phase double pipe heat exchanger at the same condition. The effect of the particle size, its material, fluidizing velocity and static bed height on overall heat transfer coefficient has been investigated. The main conclusions obtained from the experiment are as follows. 1. The overall heat transfer coefficient of the fluidized bed heat exchanger is higher than that of single phase forced convective heat exchanger (maximum 2.3 times) 2. The value of the overall heat transfer coefficient increase with an increase in static bed height and decrease with an increase in particle size. 3. For the same particle size, the particle of low density can obtain higher overall heat transfer coefficient than that of high density.

  • PDF

Finite Element Vibration/Shock Analysis of Double Stage Elastic Mounting System with Viscoelastically Damped Foundation Structure (유한용소법을 이용한 점탄성 감쇠구조물이 포함된 2단 탄성마운트 시스템의 진동/충격응답 해석)

  • 정우진;류정수;배수룡;함일배
    • Journal of KSNVE
    • /
    • v.10 no.3
    • /
    • pp.508-516
    • /
    • 2000
  • To study the possibility of F.E.M application to vibration and shock response of double stage elastic mounting system with complicated damped foundation structure like common-bed or raft in ships foundation structure model which has complicated damped sandwich cross-section is analyzed first. And then vibration responses experimental results and shock response of double stage elastic mounting system with complicated damped foundation structure like common-bed or raft in ships foundation structure model which adopts the above damped structure as intermediate foundation were compared. As a result it is found that F.E.M could be effectively used in analyzing the vibration and shock response of double and multi-stage elastic mounting system with complicated damped foundation structures.

  • PDF

An Exprimental Study on the Heat Transfer Performance in a Fluidized Bed Double Pipe Heat Exchanger (수직이중관식(垂直二重管式) 유동층형(流動層形) 열교환기(熱交換器)의 전열성능(傳熱性能)에 관한 실험적(實驗的) 연구(硏究))

  • Yoo, Ji-Oh;Seo, Jeong-Yun
    • Solar Energy
    • /
    • v.14 no.2
    • /
    • pp.39-50
    • /
    • 1994
  • Experiments have been conducted to measure the heat transfer coefficient and pressure drop in fluidized bed double pope heat exchangers with smooth tube and longitudinal finned tube. The effect of particle size(alumina beads; do=0.41, 0.54, 0.65, 0.77 mm) and static bed height on the heat transfer coefficient has been evaluated in terms of pumping power. The heat transfer coefficient for the smooth tube and finned tube heat exchangers has been compared with single phase double pipe heat exchanger. Results show that the heat transfer coefficients for the finned tube in $2.96{\sim}3.45$ times higher than the smooth tube. The heat transfer coefficients for the fluidized bed heat exchanger is higher than the single phase heat exchanger for the most of pumping power range tested. The maximum increase in the heat transfer coefficient for fluidized bed is 91.3% for the smooth tube and 127.1% for the finned tube.

  • PDF

Design of the Fixed-Bed Catalytic Reactor for the Maleic Anhydride Production (무수마레인산 생산을 위한 고정층 촉매 반응기 설계)

  • Yoon, Young Sam;Koo, Eun Hwa;Park, Pan Wook
    • Applied Chemistry for Engineering
    • /
    • v.10 no.3
    • /
    • pp.467-476
    • /
    • 1999
  • This paper analyzed the behavior of fixed-bed catalytic reactor (FBCR) which synthesizing maleic anhydride(MA) from the selective oxidation of n-butane. The behavior of FBCR describing convection-diffusion-reaction mechanism is examined by using two-dimensional pseudohomogeneous plug-flow transient model, with the kinetics of Langmuir-Hinshelwood type. Prediction model is composed by optimum parameter estimation from temperature profile, yield and conversion of single FBCR on operating condition variations of Sharma's pilot-plant experiment. A double FBCR with same yield and conversion for single FBCR generated a $8.96^{\circ}C$ lower hot spot temperature than a single FBCR. We could predict parametric sensitivity according to the variation of possible operating condition (temperature, concentration, volumetric flow of feed reactant and coolant flow rate) of single and double FBCR. Double FBCR showed the behavior of more operating range than single FBCR. Double FBCR with nonuniform activities could assure safety operation condition for the possible variation of operating condition. Also, double FBCR had slightly higher than the single FBCR in conversion and yield.

  • PDF

A study on the structural safety of middle slab in double deck tunnel under live loads (활하중에 대한 복층터널 슬래브의 구조적 안전성에 관한 연구)

  • Kim, Tae Kyun;Kim, Se Kwon;Kim, Hyun Jun;Kim, Chang Young;Yoo, Wan Kyu;Hwang, Sung-Pil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.2
    • /
    • pp.171-183
    • /
    • 2020
  • The purpose of this study is to analyze in advance the problems and improvements that may occur during the construction of intermediate slabs and the loading of intermediate slabs through the preliminary structural safety evaluation of intermediate slabs for Test bed structures in deep depth tunnels. The Test bed construction can verify and confirm the results of the design and construction technology development of large depth double deck tunnel through the process, and can also be used as a learning site for engineers and the general public to speed up the time of underground space development. There will be an opportunity to do this. In particular, the design load of middle slab built inside the circular deep-depth double-sided tunnel cross-section varies depending on the construction method and the construction equipment load used. Class 3 truck load of KL-510 assumed to be common load to upper and middle slab during loading and installation is loaded on upper and lower slab with different working position for each load combination Analyzed.

Development of a Particle Bed Heat Exchanger(II) -An Experimental Study on Heat Transfer Characteristics of Fluidized Bed Heat Exchanger with Double Pipe (Parallelflow) (입자층(粒子層)을 이용(利用)한 열교환기(熱交換器) 개발(開發)에 관(關)한 연구(硏究)(II) - 유동층형(流動層形) 이중관식(二重管式) 열교환기(熱交換器)의 전열특성(傳熱特性)에 대한 실험적(實驗的) 연구(硏究)(병행류식(竝行流式)))

  • Kim, G.C.;Yoo, J.O.;Yang, H.J.;Seo, J.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.2
    • /
    • pp.127-136
    • /
    • 1990
  • Air-solid bed has been known to be an effective heat transfer augmentation device which could be applied to heat exchangers. In this study, pressure drop and heat transfer characteristics of vertical annular fluidized bed heat exchanger with air flowing through were studied experimentally. The experiments was conducted to calculate overall heat transfer coefficient on fluidized bed heat exchangers immersed single vertical tube and investigate minimum fluidized velocity in fluidized bed of alumina beads and steel balls. The influence of flow direction, particle diameter, the heights of static bed and air mass fluidizing velocity has been examined. The experimental results showed the optimum operating condition and effective static bed height for fluidized bed heat exchangers. For the same power loss, comparisions of heat transfer effect between the fluidized bed heat exchanger and the single phase forced convetion heat exchanger indicate that both miniaturization of heat exchanger and heat transfer augmentation at low flow velocity are possible by application of the air-solid to heat exchangers.

  • PDF

A Numerical Investigation of Hydrogen Desorption Reaction for Tritium Delivery from Tritium Storage Based on ZrCo (ZrCo 기반 저장용기로부터 삼중수소 공급을 위한 수소 방출에 대한 수치해석적 연구 (II))

  • Yoo, Haneul;Jo, Arae;Gwak, Geonhui;Yun, Seihun;Chang, Minho;Kang, Hyungoo;Ju, Hyunchul
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.1
    • /
    • pp.36-43
    • /
    • 2013
  • In this paper, a three-dimensional hydrogen desorption model is applied to a thin double-layered annulus ZrCo hydride bed and validated against the temperature evolution data measured by Kang et al. The present model reasonably captures the bed temperature evolution behavior and the 90% hydrogen discharging time. In addition, the performance of thin double-layered annulus bed is evaluated by comparing with a simple cylindrical bed using hydrogen desorption model. This study provides multi-dimensional contours such as temperature and H/M atomic ratio in the metal hydride region. This numerical study provides fundamental understanding during hydrogen desorption process and indicates that efficient design of the metal hydride bed is critical to achieve rapid hydrogen discharging performance. The present three-dimensional hydrogen desorption model is a useful tool for the optimization of bed design and operating conditions.

Pressure drop in packed beds with horizontally or vertically stratified structure

  • Li, Liangxing;Xie, Wei;Zhang, Zhengzheng;Zhang, Shuanglei
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2491-2498
    • /
    • 2020
  • The paper concentrates on an experimental study of the pressure drop in double-layered packed beds formed by glass spheres, having the configuration of horizontal and vertical stratification. Both single-phase and two-phase flow tests are performed. The pressure drop during the test is recorded and the measured data are compared with those of homogeneous beds consisting of mono-size particles. The results show that for the horizontally stratified bed with fine particles atop coarse particles, the pressure drop in top layer is found higher than those of homogenous bed consisting of the same smaller size particles, while the measured pressure drop of bottom part is similar with those of similar homogenous bed. But for the homologous bed with upside-down structure, the stratification has little or no effect on the pressure drop of the horizontally stratified bed, and the pressure drop of each layer is almost same as that of homogeneous bed packed with corresponding spheres. Additionally, in vertically stratified bed, the pressure drops on the left and right side is almost equal and between those in homogeneous beds. It is speculated that vertically stratified structure may lead to lateral flow which redistributes the flow rate in different parts of packed bed.