• Title/Summary/Keyword: dosimeters

Search Result 203, Processing Time 0.024 seconds

Dose Determination in the IR-221 Gamma Facility Using a Monte Carlo Simulation (몬테칼로 시뮬레이션을 이용한 IR-221의 선량 평가)

  • Lim, Ik-Sung;Kim, Ki-Yup;Roh, Gyu-Hong;Lee, Chung
    • Journal of Radiation Protection and Research
    • /
    • v.32 no.1
    • /
    • pp.21-26
    • /
    • 2007
  • This study is performed to evaluate the dose rate and to analyze the dose distribution of the gamma irradiation facility (IR-221) by using a Monte Calro simulation, which is helpful of upgrading the radiation processing qualification. Monte Cairo simulation is performed by MCNP4B code. Dose rates were measured at total 369 points with alanine dosimeters to compare the calculation results and the measurements data. The results have shown that the MCNP4B code is very useful to determine the dose distribution of the IR-221 gamma irradiation facility, as the calculation dose rate is within about ${\pm}5%$ of the measurement data. Dosimetry about the gamma irradiation facility usually needs enormous manpower and time. However Monte Cairo calculation method can reduce the tedious dosimetry jobs and improve the irradiation processing qualification, which will probably contribute to obtain the reliability of the irradiation products.

Studies on Dose Distribution and Treatment Technique of High Energy Electron (고(高)에너지 전자선(電子線) 치료(治療)를 위(爲)한 선량분포(線量分布) 및 기술적(技術的) 문제(問題)의 연구(硏究))

  • Lee, D.H.;Chu, S.S.
    • Journal of Radiation Protection and Research
    • /
    • v.3 no.1
    • /
    • pp.6-22
    • /
    • 1978
  • High energy electron beams took effect for tumor radio-therapy, however, had a lot of problems in clinical application because of various conversion factors and complication of physical reactions. Therefor, we had experimentally studied the important properties of high energy electron beams from the linear accelerator, LMR-13, installed in Yonsei Cancer Center. The results of experimental studies on the problems in the 8, 10, 12 Mev electron beam therapy were reported as following. 1. On the measurements of the outputs and absorbed doses, the ionization type dosimeters that had calibrated by $^{90}Sr$ standard source were suitable as under 3% errors for high energy electrons to measure, but measuring doses in small field sizes and the regions of rapid fall off dose with ionization chambers were difficult. 2. The electron energy were measured precisely with energy spectrometer consisted of magnet analyzer and tele-control detector and the practical electron energy was calculated under 5% errors by maximum range of high energy electron beam in the water. 3. The correcting factors of perturbated dose distributions owing to radiation field, energy and material of the treatment cone were checked and described systematically and variation of dose distributions due to inhomogeneous tissues and sloping skin surfaces were completely compensated. 4. The electron beams, using the scatterers; ie., gold, tin, copper, lead, aluminium foils, were adequately diffused and minimizing the bremsstrahlung X-ray induced by the electron energy, irradiation field size and material of scatterers, respectively. 5. Inproving of the dose distribution from the methods of pendulum, slit, grid and focusing irradiations, the therapeutic capacity with limited electron energy could be extended.

  • PDF

Development of a Pelvic Phantom for Dose Verification in High Dose Rate (HDR) Brachytherapy

  • Jang, Ji-Na;Suh, Tae-Suk;Huh, Soon-Nyung;Kim, Hoi-Nam;Yoon, Sei-Chul;Lee, Hyoung-Koo;Choe, Bo-Young
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.150-153
    • /
    • 2002
  • High dose rate (HDR) brachytherapy in the treatment of cervix carcinoma has become popular, because it eliminated many of the problems with conventional brachytherapy. In order to improve clinical effectiveness with HDR brachytherapy, dose calculation algorithm, optimization procedures, and image registrations should be verified by comparing the dose distributions from a planning computer and those from a humanoid phantom irradiated. Therefore, the humanoid phantom should be designed such that the dose distributions could be quantitatively evaluated by utilizing the dosimeters with high spatial resolution. Therefore, the small size of thermoluminescent dosimeter (TLD) chips with the dimension of 1/8" and film dosimetry with spatial resolution of <1mm used to measure the radiation dosages in the phantom. The humanoid phantom called a pelvic phantom is made of water and tissue-equivalent acrylic plates. In order to firmly hold the HDR applicators in the water phantom, the applicators are inserted into the grooves of the applicator supporters. The dose distributions around the applicators, such as Point A and B, can be measured by placing a series of TLD chips (TLD-to- TLD distance: 5mm) in three TLD holders, and placing three verification films in orthogonal planes.

  • PDF

Raman Spectroscopy of Irradiated Normoxic Polymethacrylic Acid Gel Dosimeter

  • Bong, Ji-Hye;Choi, Kyu-Seok;Yu, Soo-Chang;Kwon, Soo-Il;Cho, Yu-Ra;Park, Chae-Hee;Park, Hyung-Wook
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.2
    • /
    • pp.625-629
    • /
    • 2011
  • A quantitative analysis of the decreasing rate of the monomer and increasing rate of the polymerization was made by monitoring radiation level increments using Raman spectroscopy within the therapeutic radiation range for a normoxic polymethacrylic acid gel dosimeter. The gel dosimeter was synthesized by stirring materials such as gelatin, distilled water, methacrylic acid, hydroquinone and tetrakis phosphonium chloride at $50^{\circ}C$, and the synthesized gel was contained in a 10- mm diameter and 32-mm high vial to conduct measurement. 24 hours after gel synthesis, it was irradiated from 0 Gy to 20 Gy by 2 Gy using a Co-60 radiotherapy unit. With use of the Cryo FE-SEM, structural changes in the 0 Gy and 10 Gy gel dosimeters were investigated. The Raman spectra were acquired using 532-nm laser as the excitation source. In accordance with fitting the changes in C-COOH stretching (801 $cm^{-1}$), C=C stretching (1639 $cm^{-1}$) and vinyl $CH_2$ stretching (3114 $cm^{-1}$) vibrational modes for monomer and $CH_2$ bending vibrational mode (1451 $cm^{-1}$) for polymer, sensitive parameter S for each mode was calculated. The values of S for monomer bands and polymer band were ranged in $6.0{\pm}2.6$ Gy and $7.2{\pm}2.3$ Gy, respectively, which shows a relatively good conformity of the decreasing rate of monomer and the increasing rate of polymerization within the range of error.

Noise Exposure Levels for the Middle and the High School Students using Headsets in the PC Rooms (PC방(게임방)에서 헤드셋을 착용한 중•고등학생의 소음 노출수준)

  • Shin, Jaewoo;Kim, Hyunwook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.15 no.2
    • /
    • pp.135-143
    • /
    • 2005
  • This study was conducted to measure the exposure levels to noise for the middle and the high school students who worn headsets in the PC rooms. The noise levels from the headsets were measured with noise dosimeters, and the statistical relationships between the utilization pattern, user's views on the PC rooms and it's environment were analyzed for the selected PC rooms in the Ahnshan area. The results were as follows; 1. No significant difference was found in the number of uses and average time spent per day by education level and by sex of the users(p>0.05). 2. No statistical significant difference was found between the contents selected by education level of the users (p>0.05). The male participants overwhelmingly enjoyed the PC games (98.3 %) while females selected for listening music (75.0 %) with significant difference(P<0.05), followed by browsing internet and PC communications (70.0 %), PC game (66.7 %) and chatting (33.3 %). 3. The actual noise measurements of the headsets worn by the users of different sexes and educational backgrounds produced no differences(p>0.05), while a significant difference was found between genders (p<0.05). 4. For sound pressure level measurements, the weighted average(Lavg) of 84.5 dB(A) on the left headsets exceeded that of 79.8 dB(A) on the right headsets significantly(p<0.01) and the maximum value of 96.9 dB(A) on the left headsets exceeded the maximum value of 93.5 dB(A) on the right headsets(p<0.01). 5. The actual noise measurements of the headsets worn by the users of different sexes and educational backgrounds produced no differences(p>0.05), however, the contents selected by the users with different educational backgrounds were noted with significant difference(p<0.05) while no difference was found by gender(p>0.05).

Dose estimation of cone-beam computed tomography in children using personal computer-based Monte Carlo software (PCXMC 소프트웨어를 이용한 소아에서의 CBCT 환자선량 평가)

  • Kim, Eun-Kyung
    • The Journal of the Korean dental association
    • /
    • v.58 no.7
    • /
    • pp.388-397
    • /
    • 2020
  • Objective: The purpose of the study was to calculate the effective and absorbed organ doses of cone-beam computed tomography (CBCT) in pediatric patient using personal computer-based Monte Carlo (PCXMC) software and to compare them with those measured using thermoluminescent dosimeters (TLDs) and anthropomorphic phantom. Materials and Methods: Alphard VEGA CBCT scanner was used for this study. A large field of view (FOV) (20.0 cm × 17.9 cm) was selected because it is a commonly used FOV for orthodontic analyses in pediatric patients. Ionization chamber of dose-area product (DAP) meter was located at the tube side of CBCT scanner. With the clinical exposure settings for a 10-year-old patient, DAP value was measured at the scout and main projection of CBCT. Effective and absorbed organ doses of CBCT at scout and main projection were calculated using PCXMC and PCXMCRotation software respectively. Effective dose and absorbed organ doses were compared with those obtained by TLDs and a 10-year-old child anthropomorphic phantom at the same exposure settings. Results: The effective dose of CBCT calculated by PCXMC software was 292.6 μSv, and that measured using TLD and anthropomorphic phantom was 292.5 μSv. The absorbed doses at the organs largely contributing to effective dose showed the small differences between two methods within the range from -18% to 20%. Conclusion: PCXMC software might be used as an alternative to the TLD measurement method for the effective and absorbed organ dose estimation in CBCT of large FOV in pediatric patients.

  • PDF

Individual Doses to the Public after the Fukushima Nuclear Accident

  • Ishikawa, Tetsuo
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.2
    • /
    • pp.53-68
    • /
    • 2020
  • Background: International organizations such as the World Health Organization (WHO) and the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) reported public exposure doses due to radionuclides released in the Fukushima nuclear accident a few years after the event. However, the reported doses were generally overestimated due to conservative assumptions such as a longer stay in deliberate areas designated for evacuation than the actual stay. After these reports had been published, more realistic dose values were reported by Japanese scientists. Materials and Methods: The present paper reviews those reports, including the most recently published articles; and summarizes estimated effective doses (external and internal) and issues related to their estimation. Results and Discussion: External dose estimation can be categorized as taking two approaches-estimation from ambient dose rate and peoples' behavior patterns-and measurements using personal dosimeters. The former approach was useful for estimating external doses in an early stage after the accident. The first 4-month doses were less than 2 mSv for most (94%) study subjects. Later on, individual doses came to be monitored by personal dosimeter measurements. On the basis of these measurements, the estimated median annual external dose was reported to be < 1 mSv in 2011 for 22 municipalities of Fukushima Prefecture. Internal dose estimation also can be categorized as taking two approaches: estimation from whole-body counting and estimation from monitoring of environmental samples such as radioactivity concentrations in food and drinking water. According to results by the former approach, committed effective dose due to 134Cs and 137Cs could be less than 0.1 mSv for most residents including those from evacuated areas. Conclusion: Realistic doses estimated by Japanese scientists indicated that the doses reported by WHO and UNSCEAR were generally overestimated. Average values for the first-year effective doses for residents in two affected areas (Namie Town and Iitate Village) were not likely to reach 10 mSv, the lower end of the doses estimated by WHO.

Reference Dosimetry and Calibration of Glass Dosimeters for Cs-137 Gamma-rays (연구용 세슘-137 조사기에 대한 흡수선량 측정과 유리선량계 교정에 관한 연구)

  • Moon, Young Min;Rhee, Dong Joo;Kim, Jung Ki;Kang, Yeong-Rok;Lee, Man Woo;Lim, Heuijin;Jeong, Dong Hyeok
    • Progress in Medical Physics
    • /
    • v.24 no.3
    • /
    • pp.140-144
    • /
    • 2013
  • In this research, the glass dosimeter was calibrated to measure the standard absorbed dose of the Cs-137 irradiator and absorbed dose in a biological sample. Absorbed dose in water for Cs-137 gamma ray was determined by the IAEA TRS-277 protocol. The PTW-TM30013 ion chamber and the PTW-TM41023 water phantom were utilized for measuring absorbed dose and the value was compared with the reading from DoseAce GD-302M glass dosimeter from Asahi Techno Glass Corporation for its calibration. The uncertainty of measurement ($1{\sigma}$) of the calibrated glass dosimeter was 2.7% and this result would be applied to improve the accuracy in measurement of absorbed dose in a biological sample.

Clinical Implementation of 3D Printing in the Construction of Patient Specific Bolus for Photon Beam Radiotherapy for Mycosis Fungoides

  • Kim, Sung-woo;Kwak, Jungwon;Cho, Byungchul;Song, Si Yeol;Lee, Sang-wook;Jeong, Chiyoung
    • Progress in Medical Physics
    • /
    • v.28 no.1
    • /
    • pp.33-38
    • /
    • 2017
  • Creating individualized build-up material for superficial photon beam radiation therapy at irregular surface is complex with rice or commonly used flat shape bolus. In this study, we implemented a workflow using 3D printed patient specific bolus and describe our clinical experience. To provide better fitted build-up to irregular surface, the 3D printing technique was used. The PolyLactic Acid (PLA) which processed with nontoxic plant component was used for 3D printer filament material for clinical usage. The 3D printed bolus was designed using virtual bolus structure delineated on patient CT images. Dose distributions were generated from treatment plan for bolus assigned uniform relative electron density and bolus using relative electron density from CT image and compared to evaluate the inhomogeneity effect of bolus material. Pretreatment QA is performed to verify the relative electron density applied to bolus structure by gamma analysis. As an in-vivo dosimetry, Optically Stimulated Luminescent Dosimeters (OSLD) are used to measure the skin dose. The plan comparison result shows that discrepancies between the virtual bolus plan and printed bolus plan are negligible. (0.3% maximum dose difference and 0.2% mean dose difference). The dose distribution is evaluated with gamma method (2%, 2 mm) at the center of GTV and the passing rate was 99.6%. The OSLD measurement shows 0.3% to 2.1% higher than expected dose at patient treatment lesion. In this study, we treated Mycosis fungoides patient with patient specific bolus using 3D printing technique. The accuracy of treatment plan was verified by pretreatment QA and in-vivo dosimetry. The QA results and 4 month follow up result shows the radiation treatment using 3D printing bolus is feasible to treat irregular patient skin.

The Study of Tissue Dose Perturbation by Air Cavity with 6MV Photon Beam (6MV 광자선에서 공동에 의한 조직 선량변동에 관한 연구)

  • Shin, Byung-Chul;Yoo, Myung-Jin;Moon, Chang-Woo;Jeung, Tae-Sig;Yum, Ha-Yong
    • Radiation Oncology Journal
    • /
    • v.13 no.4
    • /
    • pp.397-402
    • /
    • 1995
  • Purpose : To determine the perturbation effect in the tissue downstream from surface layers of lesions located in the air/tumor-tissue interface of larynx using 6MV photon beam. Materials and Methods : Thermoluminescent dosimeters(TLDs), were embedded at 3 measurement locations in slab no. 7 of a humanoid phantom and exposed to forward and backward direction using various field sizes($4{\times}4cm^2\;-\;15{\times}15cm^2$). Results : At the air/tissue interface, forward dose perturbation factor(FDPF) is about 1.085 with $4{\times}4cm^2,\;1.05\;with\;7{\times}7cm^2,\;1.048\;with\;10{\times}10cm^2$ and $1.041\;with\;15{\times}15cm^2$. Backscatter dose perturbation factor(BDPF) is about 0.99 with $4{\times}4cm^2$, 0.981 with $7{\times}7cm^2$, 0.956 with $10{\times}10cm^2$ and 0.97 with $15{\times}15cm^2$. Conclusion : FDPF is greater as field size is smaller. And FDPF is smaller as the distance is further from the air/tissue interface.

  • PDF