• Title/Summary/Keyword: dose-effect modeling

Search Result 30, Processing Time 0.027 seconds

Risk Assessment for Noncarcinogenic Chemical Effects

  • Kodell Ralph L.
    • 대한예방의학회:학술대회논문집
    • /
    • 1994.02a
    • /
    • pp.412-415
    • /
    • 1994
  • The fundamental assumption that thresholds exist for noncarcinogenic toxic effects of chemicals is reviewed; this assumption forms the basis for the no-observed-effect level/ safety-factor (NOEL/SF) approach to risk assessment for such effects. The origin and evolution of the NOEL/SF approach are traced, and its limitations are discussed. The recently proposed use of dose-response modeling to estimate a benchmark dose as a replacement for the NOEL is explained. The possibility of expanding dose-response modeling of non carcinogenic effects to include the estimation of assumed thresholds is discussed. A new method for conversion of quantitative toxic responses to a probability scale for risk assessment via dose-response modeling is outlined.

  • PDF

Propagation of radiation source uncertainties in spent fuel cask shielding calculations

  • Ebiwonjumi, Bamidele;Mai, Nhan Nguyen Trong;Lee, Hyun Chul;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3073-3084
    • /
    • 2022
  • The propagation of radiation source uncertainties in spent nuclear fuel (SNF) cask shielding calculations is presented in this paper. The uncertainty propagation employs the depletion and source term outputs of the deterministic code STREAM as input to the transport simulation of the Monte Carlo (MC) codes MCS and MCNP6. The uncertainties of dose rate coming from two sources: nuclear data and modeling parameters, are quantified. The nuclear data uncertainties are obtained from the stochastic sampling of the cross-section covariance and perturbed fission product yields. Uncertainties induced by perturbed modeling parameters consider the design parameters and operating conditions. Uncertainties coming from the two sources result in perturbed depleted nuclide inventories and radiation source terms which are then propagated to the dose rate on the cask surface. The uncertainty analysis results show that the neutron and secondary photon dose have uncertainties which are dominated by the cross section and modeling parameters, while the fission yields have relatively insignificant effect. Besides, the primary photon dose is mostly influenced by the fission yield and modeling parameters, while the cross-section data have a relatively negligible effect. Moreover, the neutron, secondary photon, and primary photon dose can have uncertainties up to about 13%, 14%, and 6%, respectively.

Bayesian Analysis of Dose-Effect Relationship of Cadmium for Benchmark Dose Evaluation (카드뮴 반응용량 곡선에서의 기준용량 평가를 위한 베이지안 분석연구)

  • Lee, Minjea;Choi, Taeryon;Kim, Jeongseon;Woo, Hae Dong
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.3
    • /
    • pp.453-470
    • /
    • 2013
  • In this paper, we consider a Bayesian analysis of the dose-effect relationship of cadmium to evaluate a benchmark dose(BMD). For this purpose, two dose-response curves commonly used in the toxicity study are fitted based on Bayesian methods to the data collected from the scientific literature on cadmium toxicity. Specifically, Bayesian meta-analysis and hierarchical modeling build an overall dose-effect relationship that use a piecewise linear model and Hill model, where the inter-study heterogeneity and inter-individual variability of dose and effect such as gender, age and ethnicity are accounted. Estimation of the unknown parameters is made by using a Markov chain Monte Carlo algorithm based user-friendly software WinBUGS. Benchmark dose estimates are evaluated for various cut-offs and compared with different tested subpopulations with with gender, age and ethnicity based on these two Bayesian hierarchical models.

Insights from an OKMC simulation of dose rate effects on the irradiated microstructure of RPV model alloys

  • Jianyang Li;Chonghong Zhang;Ignacio Martin-Bragado;Yitao Yang;Tieshan Wang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.958-967
    • /
    • 2023
  • This work studies the defect features in a dilute FeMnNi alloy by an Object Kinetic Monte Carlo (OKMC) model based on the "grey-alloy" method. The dose rate effect is studied at 573 K in a wide range of dose rates from 10-8 to 10-4 displacement per atom (dpa)/s and demonstrates that the density of defect clusters rises while the average size of defect clusters decreases with increasing dose rate. However, the dose-rate effect decreases with increasing irradiation dose. The model considered two realistic mechanisms for producing <100>-type self-interstitial atom (SIA) loops and gave reasonable production ratios compared with experimental results. Our simulation shows that the proportion of <100>-type SIA loops could change obviously with the dose rate, influencing hardening prediction for various dose rates irradiation. We also investigated ways to compensate for the dose rate effect. The simulation results verified that about a 100 K temperature shift at a high dose rate of 1×10-4 dpa/s could produce similar irradiation microstructures to a lower dose rate of 1×10-7 dpa/s irradiation, including matrix defects and deduced solute migration events. The work brings new insight into the OKMC modeling and the dose rate effect of the Fe-based alloys.

Dose Computation Modeling for Frustum Typed Ir-192 of Ralstron Source (Ralstron 선원대체형 Ir-192 원추선원의 선량 전산화 모델링)

  • 최태진
    • Progress in Medical Physics
    • /
    • v.12 no.1
    • /
    • pp.19-29
    • /
    • 2001
  • In dose modeling, the shape of actual source and sealed capsule are important parameter to determine the physical dose computation. The author investigated the effect of filter of source self-absorption and sealed capsule to designed the high dose rate Ir-192 source for Ralstron(Japan) unit. The size of source designed to 1.5 mm $\Phi$ x 1.5mm length of actual source sealed with stainless steel which is 3.0mm $\Phi$ x 12.0mm length connected to driving cable. The dose attenuation was derived 66.3 % from 2655 segmented source at reference point of 10mm lateral distance of source. The output dose rate factor in tissue for designed source showed 0.0013511 cGy/mCi-sec in reference point at 1cm lateral distance of source center. The dose distribution at inferior of source showed the 52% of that of source tip region, however, the filtering effect was small as 4% at 45degrees of source axis. The dose attenuation within 20 degrees of source axis at near source-cable connector showed large filtering effect as 40% over, but the small effect was revealed isotropic dose distribution at large angle.

  • PDF

Fault Simulation and Analysis of Generator (발전기의 사고 시뮬레이션과 분석)

  • Park, Chul-Won;Oh, Yong-Taek
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.3
    • /
    • pp.151-158
    • /
    • 2013
  • Large generator of power plant is very important. In order to protect large generator from faults, digital protective relay or IED is required. However, all protective relays for generators of the domestic power plant are operated by foreign products. And now, for technological independence from foreign and improvement of import substitution effect, IEDs using domestic technology are being developed. To evaluate performance of developing next-generation power devices, the study of the dynamic characteristics of the power plant, generator system modeling, fault simulation and analysis, should be considered. Specially, To obtain IEEE Standards COMTRADE format for relay operation test, generator system modeling and fault simulation using PSCAD/EMTDC tools must be preceded. Until now, a complete modeling of generator internal windings and fault simulation techniques dose not exist. In this paper, for evaluation performance of relay elements of developing IED, the generator system modeling and various faults simulation using PSCAD/EMTDC tools were performed. And then, the various transient phenomena through obtained relaying signal of developed modeling were analyzed.

Indirect assessment of internal irradiation from tritium decay on Lemna Minor duckweed

  • Ifayefunmi, O.S.;Mirseabasov, O.A.;Synzynys, B.I.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1991-1999
    • /
    • 2021
  • The response changes of the specific growth rate of Lemna minor duckweed was modeled using the logarithms of frond numbers on tritium activity concentration and gamma radiation dose from cobalt 60. The concept of average specific growth rate depends on the general exponential growth pattern, where toxicity is estimated based on the effect on the growth rate. One of the main questions of the effect of the radiation dose on duckweed is how to correlate the effect of beta radiation with the effect of any other radiation for modeling radiation on Lemna minor. Experimental data were extrapolated by utilizing the OECD guidelines. A linear relationship of absorbed dose and activity concentration was obtained for the average dependency growth rate of Lemna minor as D = (0.1257)·A0.585. The dose rate of gamma irradiation from 60Co increases with tritium activity dependence, on the specific growth rate of the Lemna minor duckweed. An increase in the tritium activity causes a decrease in the specific growth rate of the Lemna minor duckweed. It indicates that as the quantity of the beta radiation dose increase in Lemna minor duckweed, a higher quantity of gamma radiation will be required to cause the same effect in the specific growth rate of Lemna minor duckweed. The relation between the inhibition of the Lemna minor seedling growth and gamma and beta radiation dosage agrees roughly with that between the decrease of survival rate or fertility and dosage.

Pharmacokinetic-Pharmacodynamic Modeling of a Direct Thrombin Inhibitor, Argatroban, in Rats

  • Park, Eun-Hye;Shin, Beom-Soo;Yun, Chi-Ho;Lee, Mann-Hyung;Yoo, Sun-Dong
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.5
    • /
    • pp.373-379
    • /
    • 2009
  • This study was conducted to develop a pharmacokinetic-pharmacodynamic (PK/PD) model of a direct thrombin inhibitor, argatroban to predict the concentration-effect profiles in rats. Argatroban was i.v. injected to rats at 0. 2, 0.8 and 3.2 mg/kg doses (n = 4-5 per dose), and plasma drug levels were determined by a validated LC/MS/MS assay. The pharmacokinetics of argatroban was linear over the i.v. dose range studied. The thrombin time (TT) and the activated partial thromboplastin time (aPTT) were measured in rat plasma and they were found to linearly increase with increasing the dose. A 2-compartment pharmacokinetic model linked with an indirect response pharmacodynamic model was successfully utilized to evaluate the drug concentration-response relationship.

A Study on Implementation of a Transient Radiation Effects on Electronics(TREE) Assessment System Based on M&S (M&S 기반 반도체소자의 펄스감마선 피해평가 시스템 구축 연구)

  • Lee, Nam-Ho;Lee, Seung-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.969-973
    • /
    • 2013
  • To simulate the effect of high dose-rate radiation on semiconductor devices, device modeling work has been performed especially in the area of photo-current generation by a PIN diode. The resultant analytical values were compared with experimental ones that were specially designed and performed to benchmark the simulation results. Initial results showed 27.85% error between the simulation and the experiment. The error can be further reduced by improvement both in simulation and in related experiments. The developed technique from the study can be applicable to radiation dosimetry and to analysis on the radiation effects in electronics.

Pharmacodynamic Modeling of Vincristine in Lymphoma Patients (림프종 환자에서 회귀모형을 이용한 vincristine의 약물 용량 예측 인자 및 부작용 모델 연구)

  • Seo, Jeong-Won;Kim, Dong-Hyun;Yun, Jin-Sang;Kim, Seon-Hwa;Choi, Bo-Yoon;Oh, Jung-Mi;Kwon, Kwang-Il
    • Korean Journal of Clinical Pharmacy
    • /
    • v.21 no.2
    • /
    • pp.145-155
    • /
    • 2011
  • The objective of this study was to determine whether any pretreatment parameters were associated with pharmacological effect or toxicity parameters after vincristine administration and to describe a mathematical model, which explains the interpatient pharmacodynamic variability. The relationship between patient characteristics and vincristine dose and hematological toxicity were evaluated. 68 pediatric and adolescence patients and 107 adults with acute lymphoblastic leukemia were treated with vincristine $1.5mg/m^2/day$ IV and other anticancer drugs as scheduled. Complete blood counts and other blood test results were obtained. The input variables were age, gender, weight, lean body weight (LBW), height, body surface area, vincristine dose and total vincristine dose. The outcome measures were nadir values (white blood cells, absolute neutrophil counts, hemoglobin, and platelets); the absolute decrease, relative decrease, and survival fraction of blood cells. Polynomial regression analysis was carried out to determine the other significant covariates. The variability of $WBC_{nadir}$ was modeled with good precision and accuracy with a two-covariate model. This model should be validated and improved on with further clinical data. We believe that such pharmacodynamic modeling should be explored further to determine its performance and clinical relevance compared with modeling using pharmacokinetic parameter.