• Title/Summary/Keyword: dose reduction factor

Search Result 150, Processing Time 0.027 seconds

Managerial Factors Influencing Dose Reduction of the Nozzle Dam Installation and Removal Tasks Inside a Steam Generator Water Chamber (증기발생기 수실 노즐댐 설치 및 제거작업의 피폭선량 저감에 영향을 주는 관리요인에 관한 연구)

  • Lee, Dhong Ha
    • Journal of the Ergonomics Society of Korea
    • /
    • v.36 no.5
    • /
    • pp.559-568
    • /
    • 2017
  • Objective: The aim of this study is to investigate the effective managerial factors influencing dose reduction of the nozzle dam installation and removal tasks ranking within top 3 in viewpoint of average collective dose of nuclear power plant maintenance job. Background: International Commission on Radiation Protection (ICRP) recommended to reduce unnecessary dose and to minimize the necessary dose on the participants of maintenance job in radiation fields. Method: Seven sessions of nozzle dam installation and removal task logs yielded a multiple regression model with collective dose as a dependent variable and work time, number of participants, space doses before and after shield as independent variables. From the sessions in which a significant reduction in collective dose occurred, the effective managerial factors were elicited. Results: Work time was the most important factor contributing to collective dose reduction of nozzle dam installation and removal task. Introduction of new technology in nozzle dam design or maintenance job is the most important factor for work time reduction. Conclusion: With extended task logs and big data processing technique, the more accurate prediction model illustrating the relationship between collective dose reduction and effective managerial factors would be developed. Application: The effective managerial factors will be useful to reduce collective dose of decommissioning tasks as well as regular preventive maintenance tasks for a nuclear power plant.

Validation of a Model for Estimating Individual External Dose Based on Ambient Dose Equivalent and Life Patterns

  • Sato, Rina;Yoshimura, Kazuya;Sanada, Yukihisa;Sato, Tetsuro
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.2
    • /
    • pp.77-85
    • /
    • 2022
  • Background: After the Fukushima Daiichi Nuclear Power Station (FDNPS) accident, a model was developed to estimate the external exposure doses for residents who were expected to return to their homes after evacuation orders were lifted. However, the model's accuracy and uncertainties in parameters used to estimate external doses have not been evaluated. Materials and Methods: The model estimates effective doses based on the integrated ambient dose equivalent (H*(10)) and life patterns, considering a dose reduction factor to estimate the indoor H*(10) and a conversion factor from H*(10) to the effective dose. Because personal dose equivalent (Hp(10)) has been reported to agree well with the effective dose after the FDNPS accident, this study validates the model's accuracy by comparing the estimated effective doses with Hp(10). The Hp(10) and life pattern data were collected for 36 adult participants who lived or worked near the FDNPS in 2019. Results and Discussion: The estimated effective doses correlated significantly with Hp(10); however, the estimated effective doses were lower than Hp(10) for indoor sites. A comparison with the measured indoor H*(10) showed that the estimated indoor H*(10) was not underestimated. However, the Hp(10) to H*(10) ratio indoors, which corresponds to the practical conversion factor from H*(10) to the effective dose, was significantly larger than the same ratio outdoors, meaning that the conversion factor of 0.6 is not appropriate for indoors due to the changes in irradiation geometry and gamma spectra. This could have led to a lower effective dose than Hp(10). Conclusion: The estimated effective doses correlated significantly with Hp(10), demonstrating the model's applicability for effective dose estimation. However, the lower value of the effective dose indoors could be because the conversion factor did not reflect the actual environment.

The thickness of Cu Filter to reduce 1/2 of the patient dose (X선 진단시 피폭선량을 반으로 줄이기 위한 Cu Filter의 두께)

  • Kim, Jung-Min;Kim, Sung-Chul
    • Journal of radiological science and technology
    • /
    • v.24 no.1
    • /
    • pp.17-22
    • /
    • 2001
  • Medical X-ray examination are increased double for the last $6{\sim}8$ years. Therefore a patient exposure dose should be decrease half every 7 years. We made an experiment on copper filter thickness to decrease a patient exposure dose up to half and compared to the Image quality by MTF. The results as follow 1. A thin region like extremities needs a thicker Cu filter as compared a thick region. 2. 1/2 reduction filter must be thicker when kVp Increase. 3. Exposure factor should be increas when using 1/2 reduction filter ; extremity is 4.0 times, chest 2.9 times, skull 1.62 times, and abdomen 1.58 times 4. The MTF of using 1/2 reduction filter is lower than without filter. But no difference of visual image. 5. 1/2 reduction filter compared with double speed screen showed almost same image quality.

  • PDF

Surface Treatment of Eggshells with Low-Energy Electron Beam

  • Kataoka, Noriaki;Kawahara, Daigo;Sekiguchi, Masayuki
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.1
    • /
    • pp.8-13
    • /
    • 2021
  • Background: Salmonella enteritidis (SE) was the main cause of the pandemic of foodborne salmonellosis. The surface of eggs' shells can be contaminated with this bacterium; however, washing them with sodium hypochlorite solution not only reduces their flavor but also heavily impacts the environment. An alternative to this is surface sterilization using low-energy electron beam. It is known that irradiation with 1 kGy resulted in a significant 3.9 log reduction (reduction factor of 10,000) in detectable SE on the shell. FAO/IAEA/WHO indicates irradiation of any food commodity up to an overall average dose of 10 kGy presents no toxicological hazard. On the other hand, the Food and Drug Administration has deemed a dose of up to 3 kGy is allowable for eggs. However, the maximum dose permitted to be absorbed by an edible part (i.e., internal dose) is 0.1 Gy in Japan and 0.5 Gy in European Union. Materials and Methods: The electron beam (EB) depth dose distribution in the eggshell was calculated by the Monte Carlo method. The internal dose was also estimated by Monte Carlo simulation and experimentation. Results and Discussion: The EB depth dose distribution for the eggshells indicated that acceleration voltages between 80 and 200 kV were optimal for eggshell sterilization. It was also found that acceleration voltages between 80 and 150 kV were suitable for reducing the internal dose to ≤ 0.10 Gy. Conclusion: The optimum irradiative conditions for sterilizing only eggshells with an EB were between 80 and 150 kV.

Suggestion of Efficient High Dose Spent Filter Handling and Compaction Equipment

  • Lee, Kyungho;Chung, Sewon;Park, Seonghee;Kim, HuiGyeong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.2
    • /
    • pp.243-253
    • /
    • 2022
  • Spent filters with a high radiation dose rate of 2 mSv·hr-1 or more are not easily managed. So far, the Korean policy for spent filter disposal is to store them temporarily at nuclear power plants until the waste filters can be easily managed. Nuclear power plant decommissioning in Korea is starting with Kori unit 1. Volume reduction of waste generated during decommissioning can reduce the cost and optimize the space usage at disposal site. Therefore, efficient volume reduction is a very important factor during the decommissioning process. A conceptual method, based on the experiences of developing 200 and 800 ton compactors at Orion EnC, has been developed considering worker exposure with the followings a crusher (upgrade of compaction efficiency), an automatic dose measuring system with a NaI(Tl) detector, a shield box, an inner drum to prepare for easy handling of drums and packaging, a 30 ton compactor, and an automatic robot system. This system achieves a volume reduction ratio of up to 85.7%; hence, the system can reduce the disposal cost and waste volume. It can be applied to other types of wastes that are not easily managed due to high dose rates and remote control operation necessity.

Removal and Inactivation of Hepatitis A Virus during Manufacture of a High Purity Antihemophilic Factor VIII Concentrate from Human Plasma

  • Kim, In-Seop;Park, Yong-Woon;Lee, Sung-Rae;Lee, Mahl-Soon;Huh, Ki-Ho;Lee, Soungmin
    • Journal of Microbiology
    • /
    • v.39 no.1
    • /
    • pp.67-73
    • /
    • 2001
  • A validation study was conducted to evaluate the efficacy and mechanism of the cryo-precipitation, monoclonal anti-FVIIIc antibody (mAb) chromatography, Q-Sepharose chromatography, and lyophilization steps involved in the manufacture of high purity factor VIII (GreenMono) from human plasma, in the removal and/or inactivation of hepatitis A virus (HAV). Samples from the relevant stages of the production process were spiked with HAV and subjected to scale-down processes mimicking the manufacture of the high purity factor VIII concentrate. Samples were collected at each step and immediately titrated using a 50% tissue culture infectious dose (TCID$\_$50/) and then the virus reduction factors were evaluated. HAV was effectively partitioned from factor VⅢ during cryo-precipitation with the log reduction factor of 3.2. The mAb chromatography was the most effective step far removal of HAV with the log reduction factor of $\geq$4.3. HAV infectivity was not detected in the fraction of factor VⅢ, while most of HAV infectivity was recovered in the fractions of flow through and wash during mAb chromatography. Q-Sepharose chromatography showed the lowest efficacy for partitioning HAV with the log reduction factor of 0.7. Lyophilization was an effective step in inactivating HAV with the log reduction factor of 2.3. The cumulative lag reduction factor, $\geq$10.5, achieved for tile entire manufacturing process was several magnitudes greater than the potential HAV load of current plasma pools.

  • PDF

Investigation on Evaluation of Exposure Dose & Radiographic Technique for Diagnostic X-ray Examination (X선검진시의 촬영조건과 피폭선량 평가에 대한 조사)

  • Kim Kyung Hwan;Lee Jin Kyu
    • Journal of The Korean Radiological Technologist Association
    • /
    • v.27 no.2
    • /
    • pp.229-251
    • /
    • 2001
  • At the investigations with 200 institutes for analysis of factor associated with radiographic conditions reduction of patient exposure dose during X-ray diagnosis, 170 institutes or $85\%$ answered. For estimation of exposure dose the entrance

  • PDF

Low-dose Epidermal Growth Factor Receptor (EGFR)-Tyrosine Kinase Inhibition of EGFR Mutation-positive Lung Cancer: Therapeutic Benefits and Associations Between Dosage, Efficacy and Body Surface Area

  • Hirano, Ryosuke;Uchino, Junji;Ueno, Miho;Fujita, Masaki;Watanabe, Kentaro
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.2
    • /
    • pp.785-789
    • /
    • 2016
  • A key drug for treatment of EGFR mutation-positive non-small cell lung cancer is epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI). While the dosage of many general anti-tumor drugs is adjusted according to the patient body surface area, one uniform dose of most TKIs is recommended regardless of body size. In many cases, dose reduction or drug cessation is necessary due to adverse effects. Disease control, however, is frequently still effective, even after dose reduction. In this study, we retrospectively reviewed the characteristics of 26 patients at Fukuoka University Hospital between January 2004 and January 2015 in whom the EGFR-TKI dose was reduced with respect to progression free survival and overall survival. There were 10 and 16 patients in the gefitinib group and the erlotinib group, respectively. The median progression-free survival in the gefitinib group and the erlotinib group was 22.4 months and 14.1 months, respectively, and the median overall survival was 30.5 months and 32.4 months, respectively. After stratification of patients by body surface area, the overall median progression-free survival was significantly more prolonged in the low body surface area (<1.45 m2) group (25.6 months) compared to the high body surface area (>1.45 m2) group (9.7 months) (p=0.0131). These results indicate that low-dose EGFR-TKI may sufficiently control disease without side effects in lung cancer patients with a small body size.

Doses of Coronary Study in 64 Channel Multi-Detector Computed Tomography : Reduced Radiation Dose According to Varity of Examnination Protocols (64 채널 Multi-Detector Computed Tomography를 이용한 관상동맥검사의 선량 : 검사 프로토콜 다변화에 따른 환자선량 감소)

  • Kim, Moon-Chan
    • Journal of radiological science and technology
    • /
    • v.32 no.3
    • /
    • pp.299-306
    • /
    • 2009
  • Purpose : To compare radiation dose for coronary CT angiography (CTA) obtained with 6 examination protocols such as a retrospectively ECG gated helical scan, a prospectively ECG gated sequential scan, low kVp technique, and cardiac dose modulation technique. Materials and Methods : Coronary CTA was performed by using 6 current clinical protocols to evaluate effective dose and organ dose in primary beam area with anthropomorphic female phantom and glass dosimetric system in 64 channel multi-detector CT. After acquiring topograms of frontal and lateral projection with 80 kVp and 10 mA, main coronary scan was done with 0.35 sec tube rotation time, 40 mm collimation ($0.625\;mm{\times}64\;ea$), small scan field of view (32 cm diameter), 105 mm scan length. Heart beat rate of phantom was maintained 60 bpm in ECG gating. In constant mAs technique 120 kVp, 600 mA was used, and 100 kVp for low kVp technique. In a retrospectively ECG gated helical CT technique 0.22 pitch was used, peak mA (600 mA) was adopted in range of $40{\sim}80%$ of R-R interval and 120mA(80% reduction) in others with cardiac dose modulation. And 210 mAs was used without cardiac dose modulation. In a prospectively ECG gated sequential CT technique data were acquired at 75% R-R interval (middle diastolic phase in cardiac cycle), and 120 msec additional padding of the tube-on time was used. For effective dose calculation region specific conversion factor of dose length product in thorax was used, which was recommended by EUR 16262. Results : The mean effective dose for conventional coronary CTA without cardiac dose modulation in a retrospectively ECG gated helical scan was 17.8 mSv, and mean organ dose of heart was 103.8 mGy. With low kVp and cardiac dose modulation the mean effective dose showed 54.5% reduction, and heart dose showed 52.3% reduction, compared with that of conventional coronary CTA. And at the sequential scan(SnapShot pulse mode) under prospective ECG gating the mean effective dose was 4.9 mSv, this represents an 72.5% reduction compared with that of conventional coronary CTA. And heart dose was 33.8 mGy, this represents 67.4% reduction. In the sequential scan technique under prospective ECG gating with low kVp the mean effective dose was 3.0 mSv, this represents an 83.2% reduction compared with that of conventional coronary CTA. And heart dose was 17.7 mGy, this represents an 82.9% reduction. Conclusion : In coronary CTA at retrospectively ECG gated helical scan, cardiac dose modulation technique using low kVp reduced dose to 50% above compared with the conventional helical scan. And the prospectively ECG gated sequential scan offers substantially reduced dose compared with the traditional retrospectively ECG gated helical scan.

  • PDF

The Study of Radiation Exposure Reduction by Developing Corpus Striatum Phantom (두개골-선조체 팬텀을 이용한 선량 저감화 방안 연구)

  • Kim, Jung-Soo;Park, Chan-Rok
    • Journal of radiological science and technology
    • /
    • v.40 no.4
    • /
    • pp.595-603
    • /
    • 2017
  • The study is to produced a brain phantom simulating corpus striatum, which can evaluate the progression of parkinson's disease, to investigate possibility of reducing the brain exposure dose to CT while maintaining optimal image quality during PET-CT examinations. CT scans were performed by varying tube voltage (100, 120 kVp) and tube current (80, 140, 200 mAs) with $^{18}F$ FP-CIT injected into the phantom's hot sphere and background (radioactivity ratio 3:1)(reference condition; 120 kVp, 140 mAs). Estimated effective dose was calculated by using conversion factor according to each condition, and image quality was evaluated by setting SNR and CRChot image evaluation factors. Experimental results showed that the predicted effective dose below the CT imaging reference condition was reduced by at least 10% and by up to 60%, and the predicted effective dose beyond the reference condition was increased by 40%. In addition, there was no significant difference between SNR and CRChot of PET images, and it was confirmed that brain dose decreased with decrease of tube voltage and tube current. At the same time, there was no significant change in the quality of the image in terms of SNR and CRChot despite the change in scan conditions. This fact suggests that the quality of the images acquired under the existing dose conditions can be obtained even at low dose conditions and it is expected that it will be possible to use the brain PET-CT scan as a basic data for the research on reduction of dose and improvement of image quality.