• Title/Summary/Keyword: dose distribution

Search Result 1,174, Processing Time 0.035 seconds

A Study on the Dose Distribution for Total Body Irradiation using Co-60 Teletherapy Unit (Co-60 Teletherapy Unit를 이용한 전신조사의 선량분포에 관한 고찰)

  • Kim, Sung-Kyu;Shin, Sei-One;Kim, Myung-Se
    • Journal of Yeungnam Medical Science
    • /
    • v.6 no.2
    • /
    • pp.113-119
    • /
    • 1989
  • In recent years there has been a growing interest in total body, hemibody, total lymphoid irradiation. For refractory leukemia or lymphoma patients, various techniques and dose regimens were introduced, including high dose total body irradiation for destruction of leukemic or bone marrow cells and immunosuppression prior to bone marrow transplantation, and low dose total body irradiation for treatment of lymphocytic leukemia or lymphomas. Accurate provision for specified dose and the desired homogeneity are essential before clinical total body irradiation. Purposes of this paper are to discuss calibrating Cobalt Unit in 3m distance using Rando Phantom, to compare calculated dose, calibrated dose, and compensating filters for homogeneous dose distribution in the head and neck, the lung, and the pelvis. Results were following. 1. Measured dose on the lung was 6% higher than on the abdomen. Measured dose on the head (10%) and neck (18%) were higher than the abdomen because of thinness. Pelvic dose was measured 12% less than the abdomen. Those data suggest that compensating filter was essential. 2. Measured dose according to distance was 3% less than calculated dose which suggest that all doses in clinical use should be compared with calculated dose for minimizing error.

  • PDF

Feasibility of the 3D Printing Materials for Radiation Dose Reduction in Interventional Radiology (인터벤션 시술 시 환자의 선량감소를 위한 3D 프린팅 재료의 적용성 평가)

  • Cho, Yong-In
    • Journal of radiological science and technology
    • /
    • v.43 no.3
    • /
    • pp.169-176
    • /
    • 2020
  • Interventional radiology is performed under real-time fluoroscopy, and patients are exposed to a wide range of exposures for a long period of time depending on the examination and procedure. However, studies on radiation protection for patients during an intervention are insufficient. This study aims to evaluate the doses exposed during the intervention and the applicability of 3D printing materials. The organ dose for each intervention site was evaluated using a monte carlo simulatio. Also, the dose reduction effect of the critical organs was calculated when using a shielding device using 3D printing materials. As a result, the organ dose distribution for each intervention site showed a lower dose distribution for organs located far from the x-ray tube. It was analyzed that the influence of scattered rays was higher in the superficial organs of the back of the human body where x-rays were incident. The dose reduction effect on the critical organ using the 3D printing shield showed the highest testis among the gonads, and in the case of other organs, the dose reduction effect gradually decreased in the order of the eye, thyroid, breast, and ovary. Accordingly, it is judged that the 3D printed shield will be sufficiently usable as a shielding device for the radiation protection of critical organs.

Evaluation of Dose Distribution Using a Radiophotoluminescence Glass Dosimeter in Biobeam8000 Gamma Irradiation Device (유리선량계를 이용한 Biobeam8000 감마선 조사장치의 선량평가)

  • Shin, Sang-Hun;Lee, Sung-Hyun;Son, Ki-Hong;Lee, Hyun-Ho;Kim, Kum-Bae;Jung, Hai-Jo;Ji, Young-Hoon
    • Progress in Medical Physics
    • /
    • v.22 no.4
    • /
    • pp.198-205
    • /
    • 2011
  • Gamma irradiator is widely used for cell, animal experiment, irradiation for blood, dose measurement, and education. Biobeam8000 gamma irradiator (STS Steuerungstechnik &. Strahlenschutz GmbH, Braunschweig, Germany, Cs137, 81.4 TBq) that KIRAMS (Korea Institute of Radiological and Medical Science) has is a irradiation device that enables to be used in large-capacity of 7.5 L and extensive area. Cs-137 source moves range of 24 cm back-and-forth in a regular cycle in beaker for uniform irradiation and a beaker that puts a specimen like existing radiation irradiator such as Gammacell3000 rotates $360^{\circ}$ during irradiation. Precise dose information according to the location of radiation source would be needed because of the movement of radiation source, whereas radiation could be uniformly irradiated in comparison with existing gamma irradiator. In this study, dose distribution of the inside beaker located in Biomeam8000 gamma irradiator was measured using glass dosimeter, and dose evaluation and distribution regarding dose linearity and dose reproducibility were implemented based on measurement results. This aims to show guideline for efficient use of irradiator based on measurement result when doing experiment or radiation exposure.

Peripheral Dose Distributions of Clinical Photon Beams (광자선에 의한 민조사면 경계영역의 선량분포)

  • 김진기;김정수;권형철
    • Progress in Medical Physics
    • /
    • v.12 no.1
    • /
    • pp.71-77
    • /
    • 2001
  • The region, near the edge of a radiation beam, where the dose changes rapidly according to the distance from the beam axis is known as the penumbra. There is a sharp dose gradient zone even in megavoltage photon beams due to source size, collimator, lead alloy block, other accessories, and internal scatter ray. We investigate dosimetric characteristics on penumbra regions of a standard collimator and compare to those of theoritical model for the optimal use of the system in radiotherapy. Peripheral dose distribution of 6 W Photon beams represents penumbral forming function as the depth. Also we have discussed that the peripheral dose distribution of clinical photon beams, differences between calculation dose use of emperical penumbral forming function and measurements in penumbral region. Predictions by emperical penumbral forming functions are compared with measurements in 3-dimensional water phantom and it is shown that the method is capable of reproduceing the measured peripheral dose values usually to within the statistical uncertainties of the data. The semiconductor detector and ion chamber were positioned at a dmax depth, 5cm depth, 10cm depth, and its specific ratio was determined using a scanning data. The effective penumbra, the distance from 80% to 20% isodose lines were analyzed as a function of the distance. The extent of penumbra will also expand with depth increase. Difference of measurement value and model functions value according to character of the detector show small error in dose distribution of the peripheral dose.

  • PDF

Dose Distribution of 3-Channel Ovoid Applicator (3-Channel Vaginal Ovoids의 선량분포 특성)

  • Kim Chang Hee;Yun Sang Mo;Kim Sung Kyu;Shin Sei One
    • Progress in Medical Physics
    • /
    • v.15 no.3
    • /
    • pp.134-139
    • /
    • 2004
  • This study was aimed to develop a new ovoid applicator for vaginal high-dose rate intracavitary radiation therapy, evaluate uniformity of dose distribution, and assess clinical applicability. The authors evaluated dose uniformity of vaginal mucosa according to 5-different ovoid-separation using 2-channel and modified 3-channel ovoid applicator. There were no significant differences in the dose distribution along the vaginal mucosa with 2 and 2.5 cm separations, but there were between the 2-channel and 3-channel ovoid applicator with a separation of 3 cm or more. Although a low dose area was shown between two ovoid applicators with the 2-channel ovoid applicator, the dose distribution along the vaginal mucosa with the 3-channel ovoid applicator was very uniform.

  • PDF

Feasibility of normal tissue dose reduction in radiotherapy using low strength magnetic field

  • Jung, Nuri Hyun;Shin, Youngseob;Jung, In-Hye;Kwak, Jungwon
    • Radiation Oncology Journal
    • /
    • v.33 no.3
    • /
    • pp.226-232
    • /
    • 2015
  • Purpose: Toxicity of mucosa is one of the major concerns of radiotherapy (RT), when a target tumor is located near a mucosal lined organ. Energy of photon RT is transferred primarily by secondary electrons. If these secondary electrons could be removed in an internal cavity of mucosal lined organ, the mucosa will be spared without compromising the target tumor dose. The purpose of this study was to present a RT dose reduction in near target inner-surface (NTIS) of internal cavity, using Lorentz force of magnetic field. Materials and Methods: Tissue equivalent phantoms, composed with a cylinder shaped internal cavity, and adjacent a target tumor part, were developed. The phantoms were irradiated using 6 MV photon beam, with or without 0.3 T of perpendicular magnetic field. Two experimental models were developed: single beam model (SBM) to analyze central axis dose distributions and multiple beam model (MBM) to simulate a clinical case of prostate cancer with rectum. RT dose of NTIS of internal cavity and target tumor area (TTA) were measured. Results: With magnetic field applied, bending effect of dose distribution was visualized. The depth dose distribution of SBM showed 28.1% dose reduction of NTIS and little difference in dose of TTA with magnetic field. In MBM, cross-sectional dose of NTIS was reduced by 33.1% with magnetic field, while TTA dose were the same, irrespective of magnetic field. Conclusion: RT dose of mucosal lined organ, located near treatment target, could be modulated by perpendicular magnetic field.

Evaluation of Electron Beam Dose Distribution by Age Diffusion Equation (연령 확산 이론에 의한 전자선의 조직내 선량분포 평가)

  • 추성실
    • Progress in Medical Physics
    • /
    • v.4 no.1
    • /
    • pp.29-39
    • /
    • 1993
  • Electron beams have found unique and complementary used in the treatment of cancer, but it's very difficult to delineate dose distribution, because of multi-collisions. Numerical solution is more usefull to describe electron distributed in tissue. A semi-empirical eqution is given for the dose at any point at various depths in water. This equation is a modificated model which was based on solutions of a general age diffusion equation. Parameters have been calulated from electron beams data with energies 6~18MeV form a LINAC for use in computerised dosimetry calculations. The depth doses and isodose curves are predicted as a function of the practical range, source skin distance and field size. Depth dose accuracy have been achieved 2% above 50% depth dose and 5% at lower doses, relative to maximum dose. Also, the shape of the isodose curves with the constrictions at higher dose and bulging ot lower values are accurately predicted. Computer calculated beams have been used to generate ever isodose distribution for certain clinical situations.

  • PDF

Monte Carlo Simulation of Phytosanitary Irradiation Treatment for Mangosteen Using MRI-based Geometry

  • Oh, Se-Yeol;Kim, Jongsoon;Kwon, Soon-Hong;Chung, Sung-Won;Kwon, Soon-Goo;Park, Jong-Min;Choi, Won-Sik
    • Journal of Biosystems Engineering
    • /
    • v.39 no.3
    • /
    • pp.205-214
    • /
    • 2014
  • Purpose: Phytosanitary irradiation treatment can effectively control regulated pests while maintaining produce quality. The objective of this study was to establish the best irradiation treatment for mangosteen, a popular tropical fruit, using a Monte Carlo simulation. Methods: Magnetic resonance image (MRI) data were used to generate a 3-D geometry to simulate dose distributions in a mangosteen using a radiation transport code (MCNP5). Microsoft Excel with visual basic application (VBA) was used to divide the image data into seed, flesh, and rind. Radiation energies used for the simulation were 10 MeV (high-energy) and 1.35 MeV (low-energy) for the electron beam, 5 MeV for X-rays, and 1.25 MeV for gamma rays from Co-60. Results: At 5 MeV X-rays and 1.25 MeV gamma rays, all areas (seeds, flesh, and rind) were irradiated ranging from 0.3 ~ 0.7 kGy. The average doses decreased as the number of fruit increased. For a 10 MeV electron beam, the dose distribution was biased: the dose for the rind where the electrons entered was $0.45{\pm}0.03$ kGy and the other side was $0.24 {\pm}0.10$ kGy. Use of an electron kinetic energy absorber improved the dose distribution in mangosteens. For the 1.35 MeV electron beam, the dose was shown only in the rind on the irradiated side; no significant dose was found in the flesh or seeds. One rotation of the fruit while in front of the beam improved the dose distribution around the entire rind. Conclusion: These results are invaluable for determining the ideal irradiation conditions for phytosanitary irradiation treatment of tropical fruit.

Studies on the Interaction of High Energy Electron with Various Matters (물질을 투과한 고에너지 전자선의 선량변화)

  • Chu, S.S.;Kim, G.E.;Park, C.Y.
    • Radiation Oncology Journal
    • /
    • v.1 no.1
    • /
    • pp.11-19
    • /
    • 1983
  • Interaction between high energyelectrons and matters had many complex reactions and the high energy electrons lost their energies with collision and scattering, therefore, electrons distribution in matters was shown as various situation by scattering, exciting and ionizing with moleculars. We experimentally studies with 13 MeV Linear Accelerator and thermoluminescence dosimeter using aluminium and Teflon, etc., and measured energy loss of electrons, electron range, electron scattering and dose distribution in matter. We compared the results with theoretical formular, between 4-qw MeV, the energy loss of electrons was decreased by 2 MeV per $1g/cm^2$ but under 1MeV it was rapidly decreased. Electron range in matter reached to $0.5/cm^2$ per 1MeV of incident energy at 6-12MeV. The dose distribution in matter was increased slightly to some depth by total distribution i.e., the combined intensity of primary and secondary radiant and it was rapidly decreased near the maximum range of electrons. Energy loss of electrons and electron range measured by experiment were coincided with theoretical equations of L. Landau and Feather under 5 and 3% errors respectively. The dose distribution of electrons in matter was similar to L.V. Spencer formular, however, we had found that it was quite different in accordance with the field size and that new formular of dose distribution was induced as empirical function contained experimental factors according to field size.

  • PDF

Profile and Dose Distribution for Therapeutic Heavy Ion Beams

  • Sasaki, Hitomi;Komori, Masataka;Kohno, Toshiyuki;Kanai, Tatsuaki;Hirai, Masaaki;Urakabe, Eriko;Nishio, Teiji
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.211-213
    • /
    • 2002
  • The purpose of this work is acquiring some parameters of therapeutic heavy ion beams after penetrating a thick target. The experiments were performed using a pencil-like $\^$12/C beam of about 3 mm in diameter from NIRS-HIMAC, and the data were taken at several points of the target thickness for $\^$12/C beam of 290 MeV/u and 400 MeV/u. By the simultaneous measurements using some detectors, the atomic number of each fragment particle was identified, and the beam profile, the dose distribution and the LET spectrum for each element were derived.

  • PDF