• 제목/요약/키워드: dose calculation algorithm

검색결과 78건 처리시간 0.023초

History of the Photon Beam Dose Calculation Algorithm in Radiation Treatment Planning System

  • Kim, Dong Wook;Park, Kwangwoo;Kim, Hojin;Kim, Jinsung
    • 한국의학물리학회지:의학물리
    • /
    • 제31권3호
    • /
    • pp.54-62
    • /
    • 2020
  • Dose calculation algorithms play an important role in radiation therapy and are even the basis for optimizing treatment plans, an important feature in the development of complex treatment technologies such as intensity-modulated radiation therapy. We reviewed the past and current status of dose calculation algorithms used in the treatment planning system for radiation therapy. The radiation-calculating dose calculation algorithm can be broadly classified into three main groups based on the mechanisms used: (1) factor-based, (2) model-based, and (3) principle-based. Factor-based algorithms are a type of empirical dose calculation that interpolates or extrapolates the dose in some basic measurements. Model-based algorithms, represented by the pencil beam convolution, analytical anisotropic, and collapse cone convolution algorithms, use a simplified physical process by using a convolution equation that convolutes the primary photon energy fluence with a kernel. Model-based algorithms allowing side scattering when beams are transmitted to the heterogeneous media provide more precise dose calculation results than correction-based algorithms. Principle-based algorithms, represented by Monte Carlo dose calculations, simulate all real physical processes involving beam particles during transportation; therefore, dose calculations are accurate but time consuming. For approximately 70 years, through the development of dose calculation algorithms and computing technology, the accuracy of dose calculation seems close to our clinical needs. Next-generation dose calculation algorithms are expected to include biologically equivalent doses or biologically effective doses, and doctors expect to be able to use them to improve the quality of treatment in the near future.

Dose Calculation of Photon Beam with Wedge Filter for Radiation Therapy Planning System

  • Cheong, Kwang-Ho;Suh, Tae-Suk;Lee, Hyoung-Koo;Choe, Bo-Young
    • 한국의학물리학회:학술대회논문집
    • /
    • 한국의학물리학회 2003년도 제27회 추계학술대회
    • /
    • pp.41-41
    • /
    • 2003
  • Purpose: Even if the wedge filter is widely used for the radiation therapy to modify the photon beam intensity, the wedged photon beam dose calculation is not so easy. Radiation therapy planning systems (RTPS) have been used the empirical or semi-analytical methods such as attenuation method using wedge filter parameters or wedge filter factor obtained from measurement. However, these methods can cause serious error in penumbra region as well as in edge region. In this study, we propose the dose calculation algorithm for wedged field to minimize the error especially in the outer beam region. Materials and Method: Modified intensity by wedge filter was calculated using tissue-maximum ratio (TMR) and scatter-maximum ratio (SMR) of wedged field. Profiles of wedged and non-wedged direction was also used. The result of new dose calculation was compared with measurement and the result from attenuation method. Results: Proposed algorithm showed the good agreement with measurement in the high dose-gradient region as well as in the inner beam region. The error was decreased comparing to attenuation method. Conclusion: Although necessary beam data for the RTPS commissioning was increased, new algorithm would guarantee the improved dose calculation accuracy for wedged field. In future, this algorithm could be adopted in RTPS.

  • PDF

근접 치료에서 역방향 치료 계획의 선량분포 계산 가속화 방법 (An Accelerated Approach to Dose Distribution Calculation in Inverse Treatment Planning for Brachytherapy)

  • 조병두
    • 한국방사선학회논문지
    • /
    • 제17권5호
    • /
    • pp.633-640
    • /
    • 2023
  • 최근 근접 치료에서 방사선 차폐막을 사용하여 선량 분포를 변조하여 선량을 전달하는 정적 및 동적 변조 근접 치료 방법이 개발됨에 따라 새로운 방향성 빔 세기 변조 근접 치료에 적합한 역방향 치료 계획 및 치료 계획 최적화 알고리즘에서 선량 계산에 필요한 파라미터 및 데이터의 양이 증가하고 있다. 세기 변조 근접 치료는 방사선의 정확한 선량 전달이 가능하지만, 파라미터와 데이터의 양이 증가하기 때문에 선량 계산에 필요한 경과 시간이 증가한다. 본 연구에서는 선량 계산 경과 시간의 증가를 줄이기 위해 그래픽 카드 기반의 CUDA 가속 선량 계산 알고리즘을 구축하였다. 계산 과정의 가속화 방법은 관심 체적의 시스템 행렬 계산 및 선량 계산의 병렬화를 이용하여 진행하였다. 개발된 알고리즘은 모두 인텔(3.7GHz, 6코어) CPU와 단일 NVIDIA GTX 1080ti 그래픽 카드가 장착된 동일한 컴퓨팅 환경에서 수행하였으며, 선량 계산 시간은 디스크에서 데이터를 불러오고 전처리를 위한 작업 등의 추가 적으로 필요한 시간은 제외하고 선량 계산 시간만 측정하여 평가하였다. 그 결과 가속화된 알고리즘은 CPU로만 계산할 때보다 선량 계산 시간이 약 30배 단축된 것으로 나타났다. 가속화된 선량 계산 알고리즘은 적응방사선치료와 같이 매일 변화되는 어플리케이터의 움직임을 고려하여 새로운 치료 계획을 수립해야 하는 경우나 동적 변조 근접 치료와 같이 선량 계산에 변화되는 파라미터를 고려해야 하는 경우 치료 계획 수립 속도를 높일 수 있을 것으로 판단된다.

선량계산 및 최적화 알고리즘에 따른 치료계획의 영향 분석 (Analysis of Radiation Treatment Planning by Dose Calculation and Optimization Algorithm)

  • 김대섭;윤인하;이우석;백금문
    • 대한방사선치료학회지
    • /
    • 제24권2호
    • /
    • pp.137-147
    • /
    • 2012
  • 목 적: 알고리즘에 따른 치료계획의 영향을 분석하고 실제 치료계획을 수립할 때 고려사항을 적용하고, 나아가 최선의 치료계획을 수립하는 프로토콜을 제시하고자 한다. 대상 및 방법: 치료계획 시스템은 이클립스 10.0 (Eclipse 10.0, Varian, USA)이다. 선량계산의 알고리즘은 PBC (Pencil Beam Convolution)와 AAA (Anisotropic Analytical Algorithm)을 각각 적용하였고, 세기 조절 방사선 치료(IMRT)를 위한 최적화(Optimization) 알고리즘은 DVO (Dose Volume Optimizer 10.0.28), VMAT을 위한 최적화 알고리즘은 PRO II (Progressive Resolution Optimizer V 8.9.17)와 PRO III (Progressive Resolution Optimizer V 10.0.28)을 사용하였다. 실험을 위한 팬텀은 치료계획시스템에서 가상으로 만들었으며, $30{\times}30{\times}30$ cm의 규격에 밀도가 균일한 것(HU: 0)과 중간에 공기(HU: -1,000)로 가정되는 물질이 삽입한 된 비균질 팬텀으로 설정하였다. 실험은 먼저 팬텀(Phantom) 계획을 실시하여 일반적인 치료계획의 특징을 분석하고 그 내용을 토대로 실제 임상적용 할 치료계획을 수립하였다. 결 과: 균일한 밀도 팬텀에서 6 MV, 10 cm PDD (Percentage Depth Dose)는 PBC와 AAA는 모두 65.2%로 유사한 값을 나타냈지만, 비균질 팬텀에서 PDD는 저밀도 물질을 만나기 전까진 유사한 PDD 값을 보이다가 공기 영역에서 다른 선량곡선을 보여주고, 투과한 후에는 PDD 10 cm은 각각 75%, 73%이었다. 동일한 MU의 3차원 치료계획에서 보면, AAA 치료계획이 폐가 포함된 영역에서 저 선량으로 나타났다. 기관지와 폐의 영역이 포함된 경추 치료 환자의 2차원 대향 2문조사 치료계획을 15 MV을 이용하여 설계하였을 때, Conformity Index (ICRU 62)는 PBC 계산에서 0.95, AAA에서 0.93이었다. IMRT 치료계획은 DVO에서 보여지는 DVH가 선량계산 DVH와 동일하게 나타났다. 하지만 AAA으로 선량계산을 하였을 때는 DVO에서 조건을 만족하는 결과가 선량계산에서는 선량부족으로 나타났다. PRO II을 이용한 VMAT 치료계획은 최적화 할 때는 만족스런 결과를 얻었지만, 선량계산을 실시하였을 때는 저밀도 영역이 선량 부족으로 나타났다. 하지만 PRO III에서 같은 조건을 1회 더 최적화함으로써 최적화 결과와 선량계산 결과가 유사하였다. 결 론: 본 연구에서는 선량계산 알고리즘의 옳고 그름을 판단하지 않는다. 알고리즘이 나타내는 선량 분포의 특성을 분석하고, 특히 최적화가 필요한 IMRT나 VMAT 치료계획에서 최적화 알고리즘의 요인도 치료계획을 수립할 때 고려함으로써 최적의 치료계획을 위한 방법을 제시하고자 한다.

  • PDF

2.5D 광자선 선량계산 알고리즘 개발 (Development of 2.5D Photon Dose Calculation Algorithm)

  • 조병철;오도훈;배훈식
    • 한국의학물리학회지:의학물리
    • /
    • 제10권2호
    • /
    • pp.103-114
    • /
    • 1999
  • 본 연구에서는 외부조사 광자선에 대한 3차원 선량계산 알고리즘 모델을 개발하기 위한 기초 연구로서 기존의 2D 선량 계산 알고리즘을 확장시켜 비동일 평면 조사가 가능한 2.5D 선량계산 모델을 개발하였다. 이를 위해 3차원 치료계획 및 선량계산에 적합하도록 환자 및 조사빔에 대한 3차원 좌표계 시스템을 정의하고, 이들 간의 좌표변환식을 유도하였다. 선량계산 알고리즘으로는 "Clarkson-Cunningham" 의 2D 광자선량 계산 알고리즘을 3차원으로 확장시켜 정형 조사면 및 비정형 조사면에 대한 선량계산과 wedge filter에 대한 선량계산이 가능하도록 하였고, Batho 방식을 적용하여 비 균질 보정을 구현하였다. 선량계산의 정확도를 평가하기 위해, AAPM TG #23 에 제시된 절차에 따라 자료에 제시된 4MV 광자선에 대한 실험 값과 본 연구에서 계산된 결과를 비교한 결과, 정형조 사면에 대한 PDD(percent depth dose)는 buildup 영역을 제외하면 $\pm$1% 이내, 비정형 조사면의 경우 $\pm$3% 이내에서 실험값과 일치하였다. 또한, wedge filter에 대한 PDD 및 profile은 $\pm$3% 이내, 45$^{\circ}$ oblique 입사빔에 대한 선량은 $\pm$4% 이내에서 실험값과 일치하였다. 비균질 보정의 경우 Lung/water 경계에서 7% 과소 평가되었고, Bone/water 경계에서 3% 과대 평가되는 것으로 나타났다. 이들 결과를 종합해 볼 때, 비균질 보정을 제외하고는 비교적 정확하게 선량을 계산하는 것으로 평가되었다. 추후 대부분의 상용 2.5D 치료계획시스템 (radiation treatment planning system; RTP)들이 비균질 보정 방법으로 사용하고 있는 Equivalent TAR(tissue-air ratio) 방식을 구현시키고자 하며, 본 연구에서 구현된 선량계산 모듈을 교육 및 연구용으로 활용할 수 있을 것으로 기대 한다.것으로 기대 한다.

  • PDF

Dosimetric Validation of the Acuros XB Advanced Dose Calculation Algorithm for Volumetric Modulated Arc Therapy Plans

  • Park, So-Yeon;Park, Jong Min;Choi, Chang Heon;Chun, Minsoo;Kim, Jung-in
    • 한국의학물리학회지:의학물리
    • /
    • 제27권4호
    • /
    • pp.180-188
    • /
    • 2016
  • Acuros XB advanced dose calculation algorithm (AXB, Varian Medical Systems, Palo Alto, CA) has been released recently and provided the advantages of speed and accuracy for dose calculation. For clinical use, it is important to investigate the dosimetric performance of AXB compared to the calculation algorithm of the previous version, Anisotropic Analytical Algorithm (AAA, Varian Medical Systems, Palo Alto, CA). Ten volumetric modulated arc therapy (VMAT) plans for each of the following cases were included: head and neck (H&N), prostate, spine, and lung. The spine and lung cases were treated with stereotactic body radiation therapy (SBRT) technique. For all cases, the dose distributions were calculated using AAA and two dose reporting modes in AXB (dose-to-water, $AXB_w$, and dose-to-medium, $AXB_m$) with same plan parameters. For dosimetric evaluation, the dose-volumetric parameters were calculated for each planning target volume (PTV) and interested normal organs. The differences between AAA and AXB were statistically calculated with paired t-test. As a general trend, $AXB_w$ and $AXB_m$ showed dose underestimation as compared with AAA, which did not exceed within -3.5% and -4.5%, respectively. The maximum dose of PTV calculated by $AXB_w$ and $AXB_m$ was tended to be overestimated with the relative dose difference ranged from 1.6% to 4.6% for all cases. The absolute mean values of the relative dose differences were $1.1{\pm}1.2%$ and $2.0{\pm}1.2%$ when comparing between AAA and $AXB_w$, and AAA and $AXB_m$, respectively. For almost dose-volumetric parameters of PTV, the relative dose differences are statistically significant while there are no statistical significance for normal tissues. Both $AXB_w$ and $AXB_m$ was tended to underestimate dose for PTV and normal tissues compared to AAA. For analyzing two dose reporting modes in AXB, the dose distribution calculated by $AXB_w$ was similar to those of AAA when comparing the dose distributions between AAA and $AXB_m$.

Development of a dose estimation code for BNCT with GPU accelerated Monte Carlo and collapsed cone Convolution method

  • Lee, Chang-Min;Lee Hee-Seock
    • Nuclear Engineering and Technology
    • /
    • 제54권5호
    • /
    • pp.1769-1780
    • /
    • 2022
  • A new method of dose calculation algorithm, called GPU-accelerated Monte Carlo and collapsed cone Convolution (GMCC) was developed to improve the calculation speed of BNCT treatment planning system. The GPU-accelerated Monte Carlo routine in GMCC is used to simulate the neutron transport over whole energy range and the Collapsed Cone Convolution method is to calculate the gamma dose. Other dose components due to alpha particles and protons, are calculated using the calculated neutron flux and reaction data. The mathematical principle and the algorithm architecture are introduced. The accuracy and performance of the GMCC were verified by comparing with the FLUKA results. A water phantom and a head CT voxel model were simulated. The neutron flux and the absorbed dose obtained by the GMCC were consistent well with the FLUKA results. In the case of head CT voxel model, the mean absolute percentage error for the neutron flux and the absorbed dose were 3.98% and 3.91%, respectively. The calculation speed of the absorbed dose by the GMCC was 56 times faster than the FLUKA code. It was verified that the GMCC could be a good candidate tool instead of the Monte Carlo method in the BNCT dose calculations.

2.5D 전자선 선량계산 알고리즘 개발 (Development of 2.5D Electron Dose Calculation Algorithm)

  • 조병철;고영은;오도훈;배훈식
    • 한국의학물리학회지:의학물리
    • /
    • 제10권3호
    • /
    • pp.133-140
    • /
    • 1999
  • 본 연구에서는 외부조사 전자선에 대한 3 차원 선량계산 알고리즘 모델을 개발하기 위한 기초연구로서 기존의 2D 펜실빔 알고리즘을 확장시켜 3 차원 geometry를 적절히 고려할 수 있는 선량계산 모델을 개발하고자 한다. 선량계산 모듈은 IDL5.2(Reseach Systems Inc. 미국)를 사용하여 프로그램하였으며, Hogstrom의 펜실빔 모델에 의한 선량계산에 필요한 중심축 상의 깊이선량분포는 Siemens M6740의 12MeV 전자선에 대한 측정치를 사용하였고, 전자선의 공기 및 불에서의 선형저지능 (linear stopping power), 선형산란능 (linear scattering power) 은 ICRU 보고서 35로부터 인용하여 사용하였다. 선량계산의 정확도를 확인하기 위하여 정형 조사면에 대한 선량분포 공기 간격 효과 인체 외곽 보정에 대해 전리함, 필름 등을 사용하여 얻은 측정값과 비교, 분석하였다. PC(Pentium III 450MHz) 상에서 프로그램 실행 결과 단일 조사 빔에 대한 선량계산에 약 120초가 소요되어, 선량계산 알고리즘의 최적화를 통한 선량계산 시간 단축이 필요하다 하겠다. 선량 평가에 대한 비교 결과, 정형 및 비정형 조사변에 대한 선량분포는 선량변화가 급격한 반음영 (penumbra) 영역에서 $\pm$3mm 이내의 오차를 보였으며, 측방 선량분포에 따른 비교 결과, 측정치와 5% 이내에서 일치하였다. 또한 공기 간격 및 인체 외곽선 보정의 경우, $\pm$10% 내외에서 측정값과 일치하였다. 결론적으로, 전자선에 대한 2 차원 펜실빔 모델을 확장하여 3 차원 치료계획에 적합하게 3 차원상의 임의의 단변 선량계산이 가능하도록 구현되었다. 또한 비정형 조사변에 대한 선량계산 뿐만 아니라, 인체외곽 및 공기 간격 등과 같이 3 차원적 geometry에 대한 보정이 필요한 경우에 대하여도 이를 선량계산 시 적절히 고려함을 확인할 수 있었다. 추후, CT를 통한 비균질 보정방식을 구현할 계획이며, 이들 선량계산 모듈은 교육 및 연구용으로 적절히 활용할 수 있을 것으로 기대된다.

  • PDF

유방암 접선조사에서 PBC 알고리즘과 AAA에 따른 Field-in-Field Intensity Modulated Radiation Therapy와 Conventional Radiation Therapy 전산화 치료계획에 대한 고찰 (Study on Computerized Treatment Plan of Field-in-Field Intensity Modulated Radiation Therapy and Conventional Radiation Therapy according to PBC Algorithm and AAA on Breast Cancer Tangential Beam)

  • 염미숙;배성수;김대섭;백금문
    • 대한방사선치료학회지
    • /
    • 제24권1호
    • /
    • pp.11-14
    • /
    • 2012
  • 목 적: Anisotropic Analytical Algorithm (AAA)는 Pencil Beam Convolution (PBC) 알고리즘에 비하여 2차선과 조직 불 균질에 대한 영향에 보다 더 정확한 선량계산을 제공한다. 본 연구는 유방암 접선조사 치료계획에서 PBC 알고리즘과 AAA의 선량계산 알고리즘에 따른 선량분포의 차이를 분석하고자 한다. 대상 및 방법: 선형가속기(CL-6EX, VARIAN, USA)의 6 MV 에너지를 이용한 유방암 환자 10명을 대상으로 Eclipse treatment planning system (Version 8.9, VARIAN, USA)을 사용하여 전산화 치료계획을 수립하였다. Conventional Radiation Therapy plan(Conventional plan)과 Field-in-Field Intensity Modulated Radiation Therapy plan (FiF plan)을 PBC 알고리즘을 이용하여 치료계획을 수립한 후 Monitor Unit (MU)를 고정시키고 AAA로 변경하여 선량계산하고, Dose Volume Histogram (DVH)을 이용하여 치료계획을 비교 분석하였다. 결 과: 첫 번째, Conventional plan의 PBC 알고리즘과 AAA에 따른 차이를 평가한 결과 치료용적에 대한 평균 Conformity Index (CI) 값의 차이는 PBC 알고리즘에서 0.295 높게 평가 되었다. 동측 폐에 대한 선량을 평가한 결과 $V_{47Gy}$$V_{45Gy}$는 PBC알고리즘에서 각각 5.83%, 4.04% 높게 평가되었고, Mean dose, $V_{20Gy}$, $V_{5Gy}$, $V_{3Gy}$는 AAA에서 각각 0.6%, 0.29%, 6.35%, 10.23%높게 평가되었다. 두 번째, FiF plan의 경우 치료용적에 대한 평균 CI 값의 차이는 PBC 알고리즘에서 0.165 높게 평가 되었고, 동측 폐에 대한 선량은 $V_{47Gy}$, $V_{45Gy}$, Mean dose는 PBC 알고리즘에서 각각 6.17%, 3.80%, 0.15% 높게 평가되었고, $V_{20Gy}$, $V_{5Gy}$, $V_{3Gy}$는 AAA에서 각각 0.14%, 4.07%, 4.35% 높게 평가되었다. 결 론: 유방암 접선조사에서 AAA로 계산했을 때, PBC 알고리즘에 비해 치료용적에 대한 Conformity가 Conventional plan, FiF plan 각각 0.295, 0.165 낮게 평가 되며, 동측 폐의 고 선량 영역의 선량은 적게 나타나며, 저 선량 영역의 선량은 많게 나타므로 폐에 대한 선량을 평가하는 데 선량계산 알고리즘에 따른 특징을 고려해야 할 것으로 사료된다.

  • PDF

Dosimetric Comparison between Varian Halcyon Analytical Anisotropic Algorithm and Acuros XB Algorithm for Planning of RapidArc Radiotherapy of Cervical Carcinoma

  • Mbewe, Jonathan;Shiba, Sakhele
    • 한국의학물리학회지:의학물리
    • /
    • 제32권4호
    • /
    • pp.130-136
    • /
    • 2021
  • Purpose: The Halcyon radiotherapy platform at Groote Schuur Hospital was delivered with a factory-configured analytical anisotropic algorithm (AAA) beam model for dose calculation. In a recent system upgrade, the Acuros XB (AXB) algorithm was installed. Both algorithms adopt fundamentally different approaches to dose calculation. This study aimed to compare the dose distributions of cervical carcinoma RapidArc plans calculated using both algorithms. Methods: A total of 15 plans previously calculated using the AAA were retrieved and recalculated using the AXB algorithm. Comparisons were performed using the planning target volume (PTV) maximum (max) and minimum (min) doses, D95%, D98%, D50%, D2%, homogeneity index (HI), and conformity index (CI). The mean and max doses and D2% were compared for the bladder, bowel, and femoral heads. Results: The AAA calculated slightly higher targets, D98%, D95%, D50%, and CI, than the AXB algorithm (44.49 Gy vs. 44.32 Gy, P=0.129; 44.87 Gy vs. 44.70 Gy, P=0.089; 46.00 Gy vs. 45.98 Gy, P=0.154; and 0.51 vs. 0.50, P=0.200, respectively). For target min dose, D2%, max dose, and HI, the AAA scored lower than the AXB algorithm (41.24 Gy vs. 41.30 Gy, P=0.902; 47.34 Gy vs. 47.75 Gy, P<0.001; 48.62 Gy vs. 50.14 Gy, P<0.001; and 0.06 vs. 0.07, P=0.002, respectively). For bladder, bowel, and left and right femurs, the AAA calculated higher mean and max doses. Conclusions: Statistically significant differences were observed for PTV D2%, max dose, HI, and bowel max dose (P>0.05).