• Title/Summary/Keyword: dorsal root ganglion

Search Result 110, Processing Time 0.032 seconds

Effects of Direct Moxibustion Applied to EX-LE4 and EX-LE5 on the Pain Behavior and Expression of TRPM8 in the Rat Model of Ambient Cold Exposed Osteoarthritis (추위에 노출된 슬관절염 모델에서 내슬안, 외슬안 직접구가 통증행동과 TRPM8 발현에 미치는 영향)

  • Ji, Byeong Uk;Kim, Yiquot;Lee, Ji Eun;Koo, Sungtae
    • Korean Journal of Acupuncture
    • /
    • v.33 no.4
    • /
    • pp.204-212
    • /
    • 2016
  • Objectives : The aim of the study is to investigate the effects of moxibustion on the pain behavior and expression of TRPM8 in the dorsal root ganglion(DRG) in the rat model of ambient cold(AC) exposed osteoarthritis(OA). Methods : OA was induced by the injection of $50{\mu}l$ of 2% monosodium iodoacetate(MIA) into the knee joint cavity. To examine the level of pain, weight bearing forces(WBFs) of affected limb was measured. For the AC exposure, the animals were housed in 6 h/day at $4^{\circ}C$ for 14 days after MIA injection. Moxibustion treatment was performed at EX-LE4 and EX-LE5 with 5 cons(1, 7 or 10 mg) per day for 13 days from 5 days after MIA injection. The expressions of TRPM8 in DRG were measured by western blotting analysis. Results : The WBFs of MIA-AC group were decreased significantly compared to MIA group at 2, 3, 6, 7, 8 and 9 days after arthritis induction. After the first 6 h-AC exposure, expressions of TRPM8 in MIA-AC group were increased significantly compared to those of naive group. After moxibustion treatment, only the WBFs of 7 mg treated group were restored significantly. Moreover, the over-expressions of TRPM8 were attenuated by the moxibustion treatment in AC exposed rats. Conclusions : The data suggest that AC can increase arthritic knee pain via up-regulated TRPM8 and moxibustion treatment improve the arthritic pain via modulation of TRPM8 expression in DRG in the rat model of AC exposed MIA induced arthritis.

The Comprehension of Herpes Zoster and The Approach of Physical Therapy (대상포진 질환에 대한 이해와 물리치료적 접근)

  • Han, Jin-Tae;Choi, Young-Won;Lee, Youn-Koung;Yuk, Goon-Chang;Kweon, Oh-Hyun
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.2 no.2
    • /
    • pp.205-212
    • /
    • 2007
  • Purpose : Herpes zoster is a common dermatologic disorder and is caused by reactivation of varicella zoster virus lying dormant in the ganglion of the dorsal root Methods : The aim of this study is to elucidate the clinical characteristics of herpes zoster and it's nature of pain, and is to review the method of physical therapy for pain control. Results : Herpes zoster is characterized by segmental rash, pain, and sensory symptoms, For most patients skin healing and pain resolution occur within 3-4 weeks, However, pain can continue after the rash has healed. Pain and paresthesia often the eruption of herpes zoster and vary from itching to stabbing. The preeruptive pain may simulate other diseases and may lead to misdiagnosis and misdirected interventions. Motor symptomatology is less well known and is most often related to central nervous system disease, although true lower motor neuron application is also thought to exist Subclinical motor involvement is relatively more common than clinical motor weakness and is easily detected by using electromyography. Higher incidences of herpes zoster were observed in female and in the elderly. Conclusion : The nature of pain associated with herpes zoster varied from a superficial itching to server stabbing or bursting, and paresthesia occurred most frequently. Therefore, the study of herpes zoster will be more research and comprehend, and the approach of physical therapy should be need positively.

  • PDF

Effect of Intravenous Lidocaine on the Neuropathic Pain of Failed Back Surgery Syndrome

  • Park, Chan-Hong;Jung, Sug-Hyun;Han, Chang-Gyu
    • The Korean Journal of Pain
    • /
    • v.25 no.2
    • /
    • pp.94-98
    • /
    • 2012
  • Background: An intravenous infusion of lidocaine has been used on numerous occasions to produce analgesia in neuropathic pain. In the cases of failed back surgery syndrom, the pain generated as result of abnormal impulse from the dorsal root ganglion and spinal cord, for instance as a result of nerve injury may be particularly sensitive to lidocaine. The aim of the present study was to identify the effects of IV lidocaine on neuropathic pain items of FBSS. Methods: The study was a randomized, prospective, double-blinded, crossover study involving eighteen patients with failed back surgery syndrome. The treatments were: 0.9% normal saline, lidocaine 1 mg/kg in 500 ml normal saline, and lidocaine 5 mg/kg in 500 ml normal saline over 60 minutes. The patients underwent infusions on three different appointments, at least two weeks apart. Thus all patients received all 3 treatments. Pain measurement was taken by visual analogue scale (VAS), and neuropathic pain questionnaire. Results: Both lidocaine (1 mg/kg, 5 mg/kg) and placebo significantly reduced the intense, sharp, hot, dull, cold, sensitivity, itchy, unpleasant, deep and superficial of pain. The amount of change was not significantly different among either of the lidocaine and placebo, or among the lidocaine treatments themselves, for any of the pain responses, except sharp, dull, cold, unpleasant, and deep pain. And VAS was decreased during infusion in all 3 group and there were no difference among groups. Conclusions: This study shows that 1 mg/kg, or 5 mg/kg of IV lidocaine, and palcebo was effective in patients with neuropathic pain attributable to FBSS, but effect of licoaine did not differ from placebo saline.

Bee venom reduces burn-induced pain via the suppression of peripheral and central substance P expression in mice

  • Kang, Dong-Wook;Choi, Jae-Gyun;Kim, Jaehyuk;Park, Jin Bong;Lee, Jang-Hern;Kim, Hyun-Woo
    • Journal of Veterinary Science
    • /
    • v.22 no.1
    • /
    • pp.9.1-9.11
    • /
    • 2021
  • Background: Scalding burn injuries can occur in everyday life but occur more frequently in young children. Therefore, it is important to develop more effective burn treatments. Objectives: This study examined the effects of bee venom (BV) stimulation on scalding burn injury-induced nociception in mice as a new treatment for burn pain. Methods: To develop a burn injury model, the right hind paw was immersed temporarily in hot water (65℃, 3 seconds). Immediately after the burn, BV (0.01, 0.02, or 0.1 mg/kg) was injected subcutaneously into the ipsilateral knee area once daily for 14 days. A von Frey test was performed to assess the nociceptive response, and the altered walking parameters were evaluated using an automated gait analysis system. In addition, the peripheral and central expression changes in substance P (Sub P) were measured in the dorsal root ganglion and spinal cord by immunofluorescence. Results: Repeated BV treatment at the 2 higher doses used in this study (0.02 and 0.1 mg/kg) alleviated the pain responses remarkably and recovered the gait performances to the level of acetaminophen (200 mg/kg, intraperitoneal, once daily), which used as the positive control group. Moreover, BV stimulation had an inhibitory effect on the increased expression of Sub P in the peripheral and central nervous systems by a burn injury. Conclusions: These results suggest that a peripheral BV treatment may have positive potency in treating burn-induced pain.

Mirogabalin: could it be the next generation gabapentin or pregabalin?

  • Kim, Jae-Yeon;Abdi, Salahadin;Huh, Billy;Kim, Kyung-Hoon
    • The Korean Journal of Pain
    • /
    • v.34 no.1
    • /
    • pp.4-18
    • /
    • 2021
  • Except for carbamazepine for trigeminal neuralgia, gabapentinoid anticonvulsants have been the standard for the treatment of neuropathic pain. Pregabalin, which followed gabapentin, was developed with the benefit of rapid peak blood concentration and better bioavailability. Mirogabalin besylate (DS-5565, Tarlige®) shows greater sustained analgesia due to a high affinity to, and slow dissociation from, the α2δ-1 subunits in the dorsal root ganglion (DRG). Additionally, it produces a lower level of central nervous system-specific adverse drug reactions (ADRs), due to a low affinity to, and rapid dissociation from, the α2δ-2 subunits in the cerebellum. Maximum plasma concentration is achieved in less than 1 hour, compared to 1 hour for pregabalin and 3 hours for gabapentin. The plasma protein binding is relatively low, at less than 25%. As with all gabapentinoids, it is also largely excreted via the kidneys in an unchanged form, and so the administration dose should also be adjusted according to renal function. The equianalgesic daily dose for 30 mg of mirogabalin is 600 mg of pregabalin and over 1,200 mg of gabapentin. The initial adult dose starts at 5 mg, given orally twice a day, and is gradually increased by 5 mg at an interval of at least a week, to 15 mg. In conclusion, mirogabalin is anticipated to be a novel, safe gabapentinoid anticonvulsant with a greater therapeutic effect for neuropathic pain in the DRG and lower ADRs in the cerebellum.

Analgesic and anti-inflammatory effects of galangin: a potential pathway to inhibit transient receptor potential vanilloid 1 receptor activation

  • Kaiwen Lin;Datian Fu;Zhongtao Wang;Xueer Zhang;Canyang Zhu
    • The Korean Journal of Pain
    • /
    • v.37 no.2
    • /
    • pp.151-163
    • /
    • 2024
  • Background: Galangin, commonly employed in traditional Chinese medicine for its diverse medicinal properties, exhibits potential in treating inflammatory pain. Nevertheless, its mechanism of action remains unclear. Methods: Mice were randomly divided into 4 groups for 7 days: a normal control group, a galangin-treated (25 and 50 mg/kg), and a positive control celecoxib (20 mg/kg). Analgesic and anti-inflammatory effects were evaluated using a hot plate test, acetic acid-induced writhing test, acetic acid-induced vascular permeability test, formalin-induced paw licking test, and carrageenan-induced paw swelling test. The interplay between galangin, transient receptor potential vanilloid 1 (TRPV1), NF-κB, COX-2, and TNF-α proteins was evaluated via molecular docking. COX-2, PGE2, IL-1β, IL-6, and TNF-α levels in serum were measured using ELISA after capsaicin administration (200 nmol/L). TRPV1 expression in the dorsal root ganglion was analyzed by Western blot. The quantities of substance P (SP) and calcitonin gene-related peptide (CGRP) were assessed using qPCR. Results: Galangin reduced hot plate-induced licking latency, acetic acid-induced contortions, carrageenan-triggered foot inflammation, and capillary permeability in mice. It exhibited favorable affinity towards TRPV1, NF-κB, COX-2, and TNF-α, resulting in decreased levels of COX-2, PGE2, IL-1β, IL-6, and TNF-α in serum following capsaicin stimulation. Galangin effectively suppressed the upregulation of TRPV1 protein and associated receptor neuropeptides CGRP and SP mRNA, while concurrently inhibiting the expression of NF-κB, TNF-α, COX-2, and PGE2 mRNA. Conclusions: Galangin exerts its anti-inflammatory pain effects by inhibiting TRPV1 activation and regulating COX-2, NF-κB/TNF-α expression, providing evidence for the use of galangin in the management of inflammatory pain.

Effect of Exercise on Neurotrophins, BDNF, NT-3, GAP43 Protein Expression and Axonal Regeneration after Sciatic Nerve Injury in F344 Rats (운동이 좌골신경 손상 F344쥐의 Neurotrophins, BDNF, NT-3, GAP-43 단백질 발현과 축삭재생에 미치는 영향)

  • Yoon Jin-Hwan;Seo Tae-Beom
    • Journal of Life Science
    • /
    • v.16 no.3 s.76
    • /
    • pp.464-471
    • /
    • 2006
  • Peripheral nerve injuries are a commonly encountered clinical problem and often result in severe functional deficits. In the present study, the effects of treadmill exercise on neurotrophin expressions and functional recovery following sciatic crushed nerve injury were investigated. Animals were randomly assigned into four groups: the sciatic nerve injury group, the sciatic nerve injury and 3-day-exercise, the sciatic nerve injury and 7-days-exercise, and the sciatic nerve injury and 14-days-exercise groups. Sciatic nerve injury was caused by crushing the right sciatic nerve for 30 s using a surgical clip. A the light-exercise was applied to each of the exercise group over the respective number of days. In the present results, we identified enhanced axonal re-growth in the distal stump of the sciatic nerve 3-14 days after crush injury with treadmill training. Dorsal root ganglion (DRG) neuron when cultured from animals with nerve injury and treadmill training showed more enhanced neurite outgrowth than that of sedentary animals. Nerve growth factor (NGF) protein levels in low-intensity treadmill training group were highly induced in the injured sciatic nerves 3, 7 and 14 days after injury compared with sedentary group, and brain-derived neurotrophin factor (BDNF) protein levels in treadmill exercise group were highly induced in the injured sciatic nerve 3 days after injury compared with sedentary group. Then, treadmill exercise increased neurotrophic factors induced in the regenerating nerves. We further demonstrate that motor functional recovery after sciatic nerve injury was promoted by treadmill exercise. Thus, the present data provide a new evidence that treadmill exercise enhanced neurotrophins expression and axonal regeneration after sciatic nerve injury in rats.

Painful Channels in Sensory Neurons

  • Lee, Yunjong;Lee, Chang-Hun;Oh, Uhtaek
    • Molecules and Cells
    • /
    • v.20 no.3
    • /
    • pp.315-324
    • /
    • 2005
  • Pain is an unpleasant sensation experienced when tissues are damaged. Thus, pain sensation in some way protects body from imminent threat or injury. Peripheral sensory nerves innervated to peripheral tissues initially respond to multiple forms of noxious or strong stimuli, such as heat, mechanical and chemical stimuli. In response to these stimuli, electrical signals for conducting the nociceptive neural signals through axons are generated. These action potentials are then conveyed to specific areas in the spinal cord and in the brain. Sensory afferent fibers are heterogeneous in many aspects. For example, sensory nerves are classified as $A{\alpha}$, $-{\beta}$, $-{\delta}$ and C-fibers according to their diameter and degree of myelination. It is widely accepted that small sensory fibers tend to respond to vigorous or noxious stimuli and related to nociception. Thus these fibers are specifically called nociceptors. Most of nociceptors respond to noxious mechanical stimuli and heat. In addition, these sensory fibers also respond to chemical stimuli [Davis et al. (1993)] such as capsaicin. Thus, nociceptors are considered polymodal. Recent advance in research on ion channels in sensory neurons reveals molecular mechanisms underlying how various types of stimuli can be transduced to neural signals transmitted to the brain for pain perception. In particular, electrophysiological studies on ion channels characterize biophysical properties of ion channels in sensory neurons. Furthermore, molecular biology leads to identification of genetic structures as well as molecular properties of ion channels in sensory neurons. These ion channels are expressed in axon terminals as well as in cell soma. When these channels are activated, inward currents or outward currents are generated, which will lead to depolarization or hyperpolarization of the membrane causing increased or decreased excitability of sensory neurons. In order to depolarize the membrane of nerve terminals, either inward currents should be generated or outward currents should be inhibited. So far, many cationic channels that are responsible for the excitation of sensory neurons are introduced recently. Activation of these channels in sensory neurons is evidently critical to the generation of nociceptive signals. The main channels responsible for inward membrane currents in nociceptors are voltage-activated sodium and calcium channels, while outward current is carried mainly by potassium ions. In addition, activation of non-selective cation channels is also responsible for the excitation of sensory neurons. Thus, excitability of neurons can be controlled by regulating expression or by modulating activity of these channels.

Effects of Prunellae Spica Extract on LT4-induced Hyperthyroidism in Rats through the Regulation of Heat and Cold Imbalance (하고초추출물의 갑상선기능항진증 랫트모델에서의 한열조절작용에 의한 개선효능 연구)

  • Kang, An Na;Kang, Seok Yong;Meng, Xianglong;Ma, Junnan;Park, Jong Hun;Park, Yong-Ki
    • The Korea Journal of Herbology
    • /
    • v.33 no.4
    • /
    • pp.77-85
    • /
    • 2018
  • Objective : This study was intended to examine the effects of water extract of Prunellae Spica (PS), which is a herb with 'cold' nature based on hot and cold theory of traditional Korean medicine. Methods : Hyperthyroidism was induced in SD rats by LT4 (0.5 mg/kg, i.p.) daily for four weeks. After 2 weeks of LT4 injection, rats were divided randomly into four groups; normal, LT4-induced hyperthyroid control, PS extract (500 mg/kg, p.o.)-treated group, and propylthiouracil (PTU, 10 mg/kg, s.c.)-treated positive group. After 2 weeks of drug treatment, all rats were sacrificed and harvested blood samples and thyroid tissues. The changes of body weight, food and water intake, and body temperature were measured weekly. Serological markers were analyzed in sera using an enzyme-based assay, and thyroid tissues were stained with Hematoxylin & Eosin (H&E). Brain and dorsal root ganglion (DRG) tissues were isolated and analyzed the expression of transient receptor potential (TRP) channels by Western blot. Results : PS extract administration attenuated the loss of body weight and the increase of body temperature in LT4-induced hyperthyroidism rats. PS extract increased the level of thyroid stimulating hormone (TSH) and decreased tiiodothyronine (T3) and tetraiodothyronine (T4). In action mechanism, PS extract regulated the expression of transient receptor potential channel subfamily V member 1 (TRPV1) and transient Receptor Potential channel subfamily M member 8 (TRPM8), the thermoregulators. Conclusion : To conclude, PS extract can improve the symptoms of hyperthyroidism through regulation of the thyroid hormones imbalance and thermoregulation via TRP channels.

PERIPHERAL NERVE REGENERATION USING POLYGLYCOLIC ACID CONDUIT AND BRAIN-DERIVED NEUROTROPHIC FACTOR GENE TRANSFECTED SCHWANN CELLS IN RAT SCIATIC NERVE (BDNF 유전자 이입 슈반세포와 PGA 도관을 이용한 백서 좌골신경 재생에 관한 연구)

  • Choi, Won-Jae;Ahn, Kang-Min;Gao, En-Feng;Shin, Young-Min;Kim, Yoon-Tae;Hwang, Soon-Jeong;Kim, Nam-Yeol;Kim, Myung-Jin;Jo, Seung-Woo;Kim, Byung-Soo;Kim, Yun-Hee;Kim, Soung-Min;Lee, Jong-Ho
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.30 no.6
    • /
    • pp.465-473
    • /
    • 2004
  • Purpose : The essential triad for nerve regeneration is nerve conduit, supporting cell and neurotrophic factor. In order to improve the peripheral nerve regeneration, we used polyglycolic acid(PGA) tube and brain-derived neurotrophic factor(BDNF) gene transfected Schwann cells in sciatic nerve defects of SD rat. Materials and methods : Nerve conduits were made with PGA sheet and outer surface was coated with poly(lactic-co-glycolic acid) for mechanical strength and control the resorption rate. The diameter of conduit was 1.8mm and the length was 17mm Schwann cells were harvested from dorsal root ganglion(DRG) of SD rat aged 1 day. Schwann cells were cultured on the PGA sheet to test the biocompatibility adhesion of Schwann cell. Human BDNF gene was obtained from cDNA library and amplified using PCR. BDNF gene was inserted into E1 deleted region of adenovirus shuttle vector, pAACCMVpARS. BDNF-adenovirus was multiplied in 293 cells and purified. The BDNF-Adenovirus was then infected to the cultured Schwann cells. Left sciatic nerve of SD rat (250g weighing) was exposed and 14mm defects were made. After bridging the defect with PGA conduit, culture medium(MEM), Schwann cells or BDNF-Adenovirus infected Schwann cells were injected into the lumen of conduit, respectively. 12 weeks after operation, gait analysis for sciatic function index, electrophysiology and histomorphometry was performed. Results : Cultured Schwann cells were well adhered to PGA sheet. Sciatic index of BDNF transfected group was $-53.66{\pm}13.43$ which was the best among three groups. The threshold of compound action potential was between 800 to $1000{\mu}A$ in experimental groups which is about 10 times higher than normal sciatic nerve. Conduction velocity and peak voltage of action potential of BDNF group was the highest among experimental groups. The myelin thickness and axonal density of BDNF group was significantly greater than the other groups. Conclusion : BDNF gene transfected Schwann cells could regenerate the sciatic nerve gap(14mm) of rat successfully.