• Title/Summary/Keyword: dorsal organizer

Search Result 2, Processing Time 0.015 seconds

Goosecoid Controls Neuroectoderm Specification via Dual Circuits of Direct Repression and Indirect Stimulation in Xenopus Embryos

  • Umair, Zobia;Kumar, Vijay;Goutam, Ravi Shankar;Kumar, Shiv;Lee, Unjoo;Kim, Jaebong
    • Molecules and Cells
    • /
    • v.44 no.10
    • /
    • pp.723-735
    • /
    • 2021
  • Spemann organizer is a center of dorsal mesoderm and itself retains the mesoderm character, but it has a stimulatory role for neighboring ectoderm cells in becoming neuroectoderm in gastrula embryos. Goosecoid (Gsc) overexpression in ventral region promotes secondary axis formation including neural tissues, but the role of gsc in neural specification could be indirect. We examined the neural inhibitory and stimulatory roles of gsc in the same cell and neighboring cells contexts. In the animal cap explant system, Gsc overexpression inhibited expression of neural specific genes including foxd4l1.1, zic3, ncam, and neurod. Genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) and promoter analysis of early neural genes of foxd4l1.1 and zic3 were performed to show that the neural inhibitory mode of gsc was direct. Site-directed mutagenesis and serially deleted construct studies of foxd4l1.1 promoter revealed that Gsc directly binds within the foxd4l1.1 promoter to repress its expression. Conjugation assay of animal cap explants was also performed to demonstrate an indirect neural stimulatory role for gsc. The genes for secretory molecules, Chordin and Noggin, were up-regulated in gsc injected cells with the neural fate only achieved in gsc uninjected neighboring cells. These experiments suggested that gsc regulates neuroectoderm formation negatively when expressed in the same cell and positively in neighboring cells via soluble factors. One is a direct suppressive circuit of neural genes in gsc expressing mesoderm cells and the other is an indirect stimulatory circuit for neurogenesis in neighboring ectoderm cells via secreted BMP antagonizers.

Akap12beta supports asymmetric heart development via modulating the Kupffer's vesicle formation in zebrafish

  • Kim, Jeong-gyun;Kim, Hyun-Ho;Bae, Sung-Jin
    • BMB Reports
    • /
    • v.52 no.8
    • /
    • pp.526-531
    • /
    • 2019
  • The vertebrate body plan is accomplished by left-right asymmetric organ development and the heart is a representative asymmetric internal organ which jogs to the left-side. Kupffer's vesicle (KV) is a spherical left-right organizer during zebrafish embryogenesis and is derived from a cluster of dorsal forerunner cells (DFCs). Cadherin1 is required for collective migration of a DFC cluster and failure of DFC collective migration by Cadherin1 decrement causes KV malformation which results in defective heart laterality. Recently, loss of function mutation of A-kinase anchoring protein 12 (AKAP12) is reported as a high-risk gene in congenital heart disease patients. In this study, we demonstrated the role of $akap12{\beta}$ in asymmetric heart development. The $akap12{\beta}$, one of the akap12 isoforms, was expressed in DFCs which give rise to KV and $akap12{\beta}$-deficient zebrafish embryos showed defective heart laterality due to the fragmentation of DFC clusters which resulted in KV malformation. DFC-specific loss of $akap12{\beta}$ also led to defective heart laterality as a consequence of the failure of collective migration by cadherin1 reduction. Exogenous $akap12{\beta}$ mRNA not only restored the defective heart laterality but also increased cadherin1 expression in $akap12{\beta}$ morphant zebrafish embryos. Taken together, these findings provide the first experimental evidence that $akap12{\beta}$ regulates heart laterality via cadherin1.