• Title/Summary/Keyword: doppler ultrasound

Search Result 144, Processing Time 0.028 seconds

A New Mean Frequency Extension Method in Doppler System (초음파 도플러 시스템에서 새로운 평균 주파수 확장 방법)

  • 백광렬
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.183-190
    • /
    • 1995
  • The use of ultrasound pulsed Doppler systems has become increasingly popular due to the advantages of easy measurements of blood velocity, volume blood blow, and irregularities of the circulatory system. However, the 2-D Doppler systems have several problems, such as range ambiguity, low signal to noise ratio, and slow frame rate. The mean frequency aliasing problem originating from the pulse repetition frequency is one of major limitations in pulsed Doppler systems. A conventional approach to resolve this problem is tracking the mean frequency close to and beyond the Nyquist frequency along the temporal axis. In this paper, a new concept of tracking the mean frequency along the spatial axis is proposed. The proposed technique is fault tolerant by nature and more suitable for multi gate and 2-D Doppler system than conventional methods.

  • PDF

Developement of Efficient Algorithm to Eliminate Aliasing of Ultrasonic Pulsed Wave Doppler Signal (초음파 Pulsed Wave 도플러 신호의 Aliasing 제거를 위한 효율적인 알고리즘 개발)

  • Kim, G.D.;Hwang, J.S.;Ahn, Y.B.;Song, T.K.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.213-214
    • /
    • 1998
  • The important role of the ultrasonic Doppler system in the modem clinical medicine is to provide the clinical information of the vascular system. The ultrasonic pulsed wave(PW) Doppler system, a kind of the ultrasound Doppler system, is more available than the ultrasonic continuous wave(CW) Doppler system because it can evaluate the velocity and the direction of blood flow as well as the depth of vessel. However, the ultrasonic PW Doppler system has the disadvantage that the range of evaluating velocity of blood flow is limited(Nyquist limit). In order to solve this limit, we propose the algorithm for eliminating this aliasing in this paper. In addition, we propose the efficient signal processing algorithm.

  • PDF

A Study on the Pulsed Doppler System using Quadrature-Sampling Method in R.F. Range (RF (Radio Frequency) 영역에서의 Quadrature sampling을 이용한 펄스 도플러 장치의 개발에 관한 연구)

  • Kim, Jae-Kyoung;Jeong, Taek-Seob;Kim, Young-Kil
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.297-300
    • /
    • 1988
  • The ultrasound Doppler effect is used for measuring the velocity of the bloodflow in an artry. Because of the range information, the pulsed doppler system is most commonly used. In this paper, we propose a new pulsed doppler system which uses a quadrature sampling method in R.F. range in order to detect the bloodflow direction and to simplify the compexity of hardware. The pulsed doppler system using quadrature sampling method in R.F. range eliminates In-phase, Quadrature phase channel balancing problem at demodulator. In addition, the improved pulsed Doppler system shows the possibility of serial processing.

  • PDF

A study on the development of Pulsed Doppler System using Auto-Correlation (Auto-Correlation을 이용한 펄스 도플러 시스템에 관한 연구)

  • Lim, Chun-Sung;Rang, Chung-Shin;Lee, Hang-Sei;Kim, Young-Kil
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.705-708
    • /
    • 1988
  • Ultrasound Doppler Diagnostic System utilizes the Doppler effect for measurement of blood velocity. The sign of the Doppler frequency shift represents blood flow direction. Pulsed Doppler System uses Phase detector and zerocrossing method to produce simultaneous independent audio and velocity signals for forward and reverse blood flow direction in the time domain, had been fabricated. But time-domain analyzing such as audio evaluation and zerocrossing detection for instantaneous and mean frequency measurement doesn't, provide both an accurate and quantitative result. Therefore, it is necessary to adopt frequency domain technique to improve system performance. In this paper, we describe a unit which is composed of Pulsed Doppler System and real-time spectrum analyzer (installed TMS 32010 DSP Chip). This unit shows time-dependent spectrum variation and mean velocity of blood Signal.

  • PDF

Development of Ultrasound Sector B-Scanner(III)-Pulsed Ultrasonic Doppler System- (초음파 섹터 B-스캐너의 개발(III)-초음파 펄스 도플러 장치-)

  • 백광렬;안영복
    • Journal of Biomedical Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.139-146
    • /
    • 1986
  • Pulsed ultrasonic Doppler system is a useful diagnostic instrument to measure blood-flow-velocity, velocity profile, and volume-blood-flow. This system is more powerful compare with 2-dimensional B-scan tissue image. A system has been deve- loped and ii being evaluated using TMS 32010 DSP. We use this DSP for the purpose of real-time spectrum analyzer to obtain spectrogram in singlegate pulsed Doppler system and for the serial comb filter to cancel clutter and zero crossing counter to estimate Doppler mean frequency in multigate pulsed Doppler system. The Doppler shift of the backscattered signals is sensed in a phase detector. This Doppler signal corresponds to the mean velocity over a some region in space defined by the ultrasonic beam dimensions, transmitted pulse duration, and transducer ban(iwidth. Multi- gate pulsed Doppler system enable the transcutaneous and simultaneous assessment of the velocities in a number of adjacent sample volumes as a continuous function of time. A multigate pulsed Doppler system processing the information originating from presented.

  • PDF

Observation with Calcifications of Breast Tissue Phantoms Using Acoustic Resonance (공명현상을 이용한 유방조직 팬텀의 석회화 관찰)

  • Ha, Myeung-Jin;Kim, Jeong-Koo
    • Journal of radiological science and technology
    • /
    • v.31 no.1
    • /
    • pp.61-69
    • /
    • 2008
  • Diagnosis of breast ultrasound is better than mammography in the early detection of breast cancer, but, it is difficult to detect microcalcification. We studied on detection for calcification of breast tissue using acoustic resonance and power doppler with 7.5 MHz linear probe in breast ultrasound. We first constructed breast tissue phantom made of gelatin and saw breast, and then observed calcification by the change of external vibration. Calcification injected breast tissue phantom visualized the difference for brightness and region of color in ROI regions of power doppler. Acoustic resonance almost never visualized in low frequency regions, plateau constituted in about 300-400 Hz and colors vanished according to the increase of frequency.

  • PDF

In vivo Evaluation of Flow Estimation Methods for 3D Color Doppler Imaging

  • Yoo, Yang-Mo
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.3
    • /
    • pp.177-186
    • /
    • 2010
  • In 3D ultrasound color Doppler imaging (CDI), 8-16 pulse transmissions (ensembles) per each scanline are used for effective clutter rejection and flow estimation, but it yields a low volume acquisition rate. In this paper, we have evaluated three flow estimation methods: autoregression (AR), eigendecomposition (ED), and autocorrelation combined with adaptive clutter rejection (AC-ACR) for a small ensemble size (E=4). The performance of AR, ED and AC-ACR methods was compared using 2D and 3D in vivo data acquired under different clutter conditions (common carotid artery, kidney and liver). To evaluate the effectiveness of three methods, receiver operating characteristic (ROC) curves were generated. For 2D kidney in vivo data, the AC-ACR method outperforms the AR and ED methods in terms of the area under the ROC curve (AUC) (0.852 vs. 0.793 and 0.813, respectively). Similarly, the AC-ACR method shows higher AUC values for 2D liver in vivo data compared to the AR and ED methods (0.855 vs. 0.807 and 0.823, respectively). For the common carotid artery data, the AR provides higher AUC values, but it suffers from biased estimates. For 3D in vivo data acquired from a kidney transplant patient, the AC-ACR with E=4 provides an AUC value of 0.799. These in vivo experiment results indicate that the AC-ACR method can provide more robust flow estimates compared to the AR and ED methods with a small ensemble size.

A Study on a Multichannel(128) Ultrasound Pulsed Doppler System with Serial Data Processing for Sensing the Blood Flow (혈류 진단을 위하여 직렬데이터 처리를 하는 다중(128) 채널 초음파 펄스 도플러 시스템에 관한 연구)

  • Kim, Young-Kil
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.3
    • /
    • pp.389-396
    • /
    • 1986
  • A pulsed ultrasonic doppler flowmeter for mesurements of velocity profils in man is described. The device projects a beam of ultrasound in burst of 570 ns duration at 3.5 MHz. The back-scattered signals are processed to produce a signal oxrresponding to the mean velocity over a small region of the flowing stream. The observation range of 112mm is divided into 128 depth channels. The size of this sample volume determines the flowmeter sensitivity and accuracy. The device uses a quadrature detector to detect the direction of the moving target(hemoglobin). The main feature of the novel instrumnet is its simple hardware structure due to sequential signal processing.

  • PDF

Value of Ultrasound Elastography in Assessment of Enlarged Cervical Lymph Nodes

  • Teng, Deng-Ke;Wang, Hui;Lin, Yuan-Qiang;Sui, Guo-Qing;Guo, Feng;Sun, Li-Na
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.2081-2085
    • /
    • 2012
  • Background: To investigate the value of ultrasound elastography (UE) in the differentiation between benign and malignant enlarged cervical lymph nodes (LNs). Methods: B-mode ultrasound, power Doppler imaging and UE were examined to determine LN characteristics. Two kinds of methods, 4 scores of elastographic classification and a strain ratio (SR) were used to evaluate the ultrasound elastograms. Results: The cutoff point of SR had high utility in differential diagnosis of benign and malignant of cervical lymph nodes, with good sensitivity, specificity and accuracy. Conclusion: UE is an important aid in differential diagnosis of benign and malignant cervical LNs.

Blood flow velocity in the anterior humeral circumflex artery and tear size can predict synovitis severity in patients with rotator cuff tears

  • Takahiro Machida;Takahiko Hirooka;Akihisa Watanabe;Hinako Katayama;Yuki Matsukubo
    • Clinics in Shoulder and Elbow
    • /
    • v.27 no.1
    • /
    • pp.11-17
    • /
    • 2024
  • Background: Rotator cuff tears are often associated with synovitis, but the ability of noninvasive ultrasonography to predict the severity of synovitis remains unclear. We investigated whether ultrasound parameters, namely peak systolic velocity in the anterior humeral circumflex artery and Doppler activity in the glenohumeral joint and subacromial space, reflect synovitis severity. Methods: A total of 54 patients undergoing arthroscopic rotator cuff repair were selected. Doppler ultrasound was used to measure peak systolic velocity in the anterior humeral circumflex artery and Doppler activity in the glenohumeral joint and subacromial space, and these values were compared with the intraoperative synovitis score in univariate and multivariate analyses. Results: Univariate analyses revealed that tear size, peak systolic velocity in the anterior humeral circumflex artery, and Doppler activity in the glenohumeral joint were associated with synovitis in the glenohumeral joint (P=0.02, P<0.001, P=0.02, respectively). In the subacromial space, tear size, peak systolic velocity in the anterior humeral circumflex artery, and Doppler activity in the subacromial space were associated with synovitis severity (P=0.02, P<0.001, P=0.02, respectively). Multivariate analyses indicated that tear size and peak systolic velocity in the anterior humeral circumflex artery were independently associated with synovitis scores in both the glenohumeral joint and the subacromial space (all P<0.05). Conclusions: These findings demonstrate that tear size and peak systolic velocity in the anterior humeral circumflex artery, which can both be measured noninvasively, are useful indicators of synovitis severity.