• 제목/요약/키워드: doping aluminum

검색결과 65건 처리시간 0.026초

실리콘에서 깊은 접합의 형성을 위한 알루미늄의 확산 모델 (Diffusion Model of Aluminium for the Formation of a Deep Junction in Silicon)

  • 정원채
    • 한국전기전자재료학회논문지
    • /
    • 제33권4호
    • /
    • pp.263-270
    • /
    • 2020
  • In this study, the physical mechanism and diffusion effects in aluminium implanted silicon was investigated. For fabricating power semiconductor devices, an aluminum implantation can be used as an emitter and a long drift region in a power diode, transistor, and thyristor. Thermal treatment with O2 gas exhibited to a remarkably deeper profile than inert gas with N2 in the depth of junction structure. The redistribution of aluminum implanted through via thermal annealing exhibited oxidation-enhanced diffusion in comparison with inert gas atmosphere. To investigate doping distribution for implantation and diffusion experiments, spreading resistance and secondary ion mass spectrometer tools were used for the measurements. For the deep-junction structure of these experiments, aluminum implantation and diffusion exhibited a junction depth around 20 ㎛ for the fabrication of power silicon devices.

Atomic layer deposition of Al-doped ZnO thin films using dimethylaluminum isopropoxide as Al dopant

  • 이희주;김건희;우정준;전두진;김윤수
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.178-178
    • /
    • 2010
  • We have deposited aluminum-doped ZnO thin films on borosilicate glass by atomic layer deposition. Diethylzinc (DEZ) and dimethylaluminum isopropoxide (DMAIP) were used as the metal precursor and the Al-dopant, respectively. Water was used as an oxygen source. DMAIP was successfully used as an aluminum precursor for chemical vapor deposition and ALD. All deposited films showed n-type conduction. The resistivity decreased to a minimum and then increased with increasing the aluminum content. The carrier concentration increased and the carrier mobility decreased with increasing the DMAIP to DEZ pulse ratio. The average optical transmittance was nearly 80 % in the visible part of the spectrum. The absorption edge moved to the shorter wavelength region with increasing the DMAIP to DEZ pulse ratio. Our results indicate that DMAIP is suitable for Al doping of ZnO films.

  • PDF

Aluminum 및 Aluminum-Boron후면 전극에 따른 단결정 실리콘 태양전지 특성 (Characteristics of Mono Crystalline Silicon Solar Cell for Rear Electrode with Aluminum and Aluminum-Boron)

  • 홍지화;백태현;김진국;최성진;김남수;강기환;유권종;송희은
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.34-39
    • /
    • 2011
  • Screen printing method is a common way to fabricate the crystalline silicon solar cell with low-cost and high-efficiency. The screen printing metallization use silver paste and aluminum paste for front and rear contact, respectively. Especially the rear contact between aluminum and silicon is important to form the back surface filed (Al-BSF) after firing process. BSF plays an important role to reduces the surface recombination due to $p^+$ doping of back surface. However, Al electrode on back surface leads to bow occurring by differences in coefficient of thermal expansion of the aluminum and silicon. In this paper, we studied the properties of mono crystalline silicon solar cell for rear electrode with aluminum and aluminum-boron in order to characterize bow and BSF of each paste. The 156*156 $m^2$ p-type silicon wafers with $200{\mu}m$ thickness and 0.5-3 ${\Omega}\;cm$ resistivity were used after texturing, diffusion, and antireflection coating. The characteristics of solar cells was obtained by measuring vernier callipers, scanning electron microscope and light current-voltage. Solar cells with aluminum paste on the back surface were achieved with $V_{OC}$ = 0.618V, JSC = 35.49$mA/cm^2$, FF(Fill factor) = 78%, Efficiency = 17.13%.

  • PDF

Enhanced efficiency of organic light-emitting diodes by doping the electrontransport layer

  • Lee, Hyun-Koo;Kwon, Do-Sung;Lee, Chang-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.II
    • /
    • pp.1410-1412
    • /
    • 2005
  • We present that the electroluminescence (EL) efficiency can be improved by doping an electron transport layer (ETL) with organic materials which can make electron current increase. The electron transport layer of aluminum tris(8 -hydroxyquinoline) (Alq3) is doped with 2-(4-Biphenylyl)-5-(4-tertbutylphenyl)- 1,3,4-oxadiazole) (butyl-PBD) to enhance the electron mobility of the ETL. The higher quantum efficiency of device having ETL using Alq3 doped with butyl-PBD can be attributed to the improved electron and hole balance.

  • PDF

SLS 다결정 실리콘 TFT 소자의 불량분석에 관한 연구 (A Failure Analysis of SLS Polysilicon TFT Devices for Enhanced Performances)

  • 오재영;김동환;박정호;박원규
    • 한국전기전자재료학회논문지
    • /
    • 제15권11호
    • /
    • pp.969-975
    • /
    • 2002
  • Thin film transistors(TFT) were made based on the polycrystalline Si (poly-Si) crystallized by sequential lateral solidification(SLS) method. The electrical characteristics of the devices were analyzed. n-type TFTs did not show a superior characteristics compared to p-type TFTs. We analyzed the causes of the failure by focused ion beam(FIB) analysis and automatic spreading resistance(ASR) measurement, to study the structural integrity and the doping distribution, respectively. FIB showed no structural problems but it revealed a non-intermixed layer in the contact holes between the polysilicon and the aluminum electrode. ASR analyses on poly-Si layer with various doping concentrations and activation temperatures showed that the inadequately doped areas were partially responsible for the inferior behavior of the whole device.

산화 아연에서의 질소 용해도에 대한 알루미늄의 효과 : 밀도 범함수 이론 (Effect of Aluminum on Nitrogen Solubility in Zinc Oxide: Density Functional Theory)

  • 김대희;이가원;김영철
    • 한국재료학회지
    • /
    • 제21권12호
    • /
    • pp.639-643
    • /
    • 2011
  • Zinc oxide as an optoelectronic device material was studied to utilize its wide band gap of 3.37 eV and high exciton biding energy of 60 meV. Using anti-site nitrogen to generate p-type zinc oxide has shown a deep acceptor level and low solubility. To increase the nitrogen solubility in zinc oxide, group 13 elements (aluminum, gallium, and indium) was co-added to nitrogen. The effect of aluminum on nitrogen solubility in a $3{\times}3{\times}2$ zinc oxide super cell containing 72 atoms was investigated using density functional theory with hybrid functionals of Heyd, Scuseria, and Ernzerhof (HSE). Aluminum and nitrogen were substituted for zinc and oxygen sites in the super cell, respectively. The band gap of the undoped super cell was calculated to be 3.36 eV from the density of states, and was in good agreement with the experimentally obtained value. Formation energies of a nitrogen molecule and nitric oxide in the zinc oxide super cell in zinc-rich conditions were lower than those in oxygen-rich conditions. When the number of nitrogen molecules near the aluminum increased from one to four in the super cell, their formation energies decreased to approach the valence band maximum to some degree. However, the acceptor level of nitrogen in zinc oxide with the co-incorporation of aluminum was still deep.

Thermal Stability of Hydrogen Doped AZO Thin Films Prepared by r.f. Magnetron Sputtering

  • 박용섭;이수호;김중규;하종찬;홍병유;이준신;이재형
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.699-700
    • /
    • 2013
  • Aluminum and hydrogen doped zinc oxide (AZHO) films were prepared by r.f. magnetron sputtering. The structural, electrical, and optical properties of the AHZO films were investigated in terms of the annealing conditions to study the thermal stability. The XRD measurements revealed that the degree of c-axis orientation was decreased and the crystallintiy of the films was deteriorated by the heat treatment. The electrical resistivity was significantly increased when the films were annealed at higher temperature. Although the optical transmittance of AHZO films didn't highly changed by heat treatment, the optical band gap was reduced, regardless of annealing temperature and duration. The thermal stability of AHZO films was worse compared to AZO films.

  • PDF

Screen printed contacts formation by rapid thermal annealing in multicrystalline silicon solar cells

  • Kim, Kyung hae;U. Gangopadhyay;Han, Chang-Soo;K. Chakrabarty;J. Yi
    • Journal of Korean Vacuum Science & Technology
    • /
    • 제6권3호
    • /
    • pp.120-125
    • /
    • 2002
  • The aim of the present work is to optimized the annealing parameter in both front and back screen printed contacts realization on p-type multicrystalline silicon and with phosphorus diffused. The RTA treatments were carried out at various temperatures from 600 to 850$\^{C}$ and annealing time ranging from 3 min to 5 min in air, O$_2$and N$_2$ ambiance. The contacts parameters are obtained according to Transmission Line Model measurements. A good RTA cycle is obtained with a temperature plateau of 700$\^{C}$-750$\^{C}$ and annealing ambiance of air. Several processing parameters required for good cell efficiency are discussed with an emphasis placed on the critical role of the glass frit in the aluminum paste. A anamolus behaviour of Aluminum n-doping on p-type Si wafer, contact at high temperature have also been studied.

  • PDF

Influence of Plasma Discharge Power on the Electrical and Optical Properties of Aluminum Doped Zinc Oxide Thin Films

  • Moon, Yeon-Keon;Park, Jong-Wan
    • 한국재료학회지
    • /
    • 제16권6호
    • /
    • pp.346-350
    • /
    • 2006
  • Al-doped ZnO (AZO) thin films were grown on type of glass#1737 substrates by DC magnetron sputtering. The structural, electrical and optical properties of the films were investigated as a function of various plasma discharge power. The obtained films were polycrystalline with a hexagonal wurtzite structure and preferentially oriented in the (002) crystallographic direction. The lowest resistivity was $6.0{\times}10^{-4}{\Omega}cm$ with the carrier concentration of $2.69{\times}10^{20}cm^{-3}$ and Hall mobility of 20.43 $cm^2/Vs$. The average transmittance in the visible range was above 90%.

용매열 합성법을 통하여 알루미늄을 도핑한 니켈옥사이드의 제조와 그 결정구조적, 전기적 특성 (Preparation of Al-doped NiO via Solvothermal Synthesis and its Crystal Structural and Electrical Properties)

  • 홍선기;지미정;이민진;정성헌;설광희;최병현
    • 한국재료학회지
    • /
    • 제22권11호
    • /
    • pp.631-635
    • /
    • 2012
  • Nickel oxide was doped with a wide range of concentrations (mol%) of Aluminum (Al) by solvothermal synthesis; single-phased nano powder of nickel oxide was generated after calcination at$900^{\circ}C$. When the concentration of Al dopant was increased, the reduced intensity was confirmed through XRD analysis. Lattice parameters of the synthesized NiO powder were decreased after treatment of the dopant; parameters were increased when the concentration of Al was over the doping limit (5 mol% Al). The binding energy of $Ni^{2+}$ was chemically shifted to $Ni^{3+}$ by doping $Al^{3+}$ ion, as confirmed by the XPS analysis. The tilted structure of the synthesized NiO with 5 mol% Al dopant and the polycrystalline structure of the $Ni_{0.75}Al_{0.25}O$ were observed by HR-TEM analysis. The electrical conductivity of the newly synthesized NiO was highly improved by Al doping in the conductivity test. The electrical conductivity values of the commercial NiO and the synthesized NiO with 5 mol% Al dopant ($Ni_{0.95}Al_{0.05}O$) were 1,400 s/cm and 2,230 s/cm at $750^{\circ}C$, respectively. However, the electrical conductivity of the synthesized NiO with 10 mol% Al dopant ($Ni_{0.9}Al_{0.1}O$) decreased due to the scattering of free-electrons caused by the large number of impurity atoms; the electrical conductivity of $Ni_{0.9}Al_{0.1}O$ was 545 s/cm at $750^{\circ}C$.