• 제목/요약/키워드: dopaminergic system

검색결과 78건 처리시간 0.022초

Efficient Generation of Dopaminergic Neurons from Mouse Ventral Midbrain Astrocytes

  • Jin Yi Han;Eun-Hye Lee;Sang-Mi Kim;Chang-Hwan Park
    • Biomolecules & Therapeutics
    • /
    • 제31권3호
    • /
    • pp.264-275
    • /
    • 2023
  • Parkinson's disease (PD) is a common neurodegenerative disorder characterized by tremors, bradykinesia, and rigidity. PD is caused by loss of dopaminergic (DA) neurons in the midbrain substantia nigra (SN) and therefore, replenishment of DA neurons via stem cell-based therapy is a potential treatment option. Astrocytes are the most abundant non-neuronal cells in the central nervous system and are promising candidates for reprogramming into neuronal cells because they share a common origin with neurons. The ability of neural progenitor cells (NPCs) to proliferate and differentiate may overcome the limitations of the reduced viability and function of transplanted cells after cell replacement therapy. Achaete-scute complex homolog-like 1 (Ascl1) is a well-known neuronal-specific factor that induces various cell types such as human and mouse astrocytes and fibroblasts to differentiate into neurons. Nurr1 is involved in the differentiation and maintenance of DA neurons, and decreased Nurr1 expression is known to be a major risk factor for PD. Previous studies have shown that direct conversion of astrocytes into DA neurons and NPCs can be induced by overexpression of Ascl1 and Nurr1 and additional transcription factors genes such as superoxide dismutase 1 and SRY-box 2. Here, we demonstrate that astrocytes isolated from the ventral midbrain, the origin of SN DA neurons, can be effectively converted into DA neurons and NPCs with enhanced viability. In addition, when these NPCs are inducted to differentiate, they exhibit key characteristics of DA neurons. Thus, direct conversion of midbrain astrocytes is a possible cell therapy strategy to treat neurodegenerative diseases.

The Role of Spinal Dopaminergic Transmission in the Analgesic Effect of Nefopam on Rat Inflammatory Pain

  • Kim, Do Yun;Chae, Joo Wung;Lim, Chang Hun;Heo, Bong Ha;Park, Keun Suk;Lee, Hyung Gon;Choi, Jeong Il;Yoon, Myung Ha;Kim, Woong Mo
    • The Korean Journal of Pain
    • /
    • 제29권3호
    • /
    • pp.164-171
    • /
    • 2016
  • Background: Nefopam has been known as an inhibitor of the reuptake of monoamines, and the noradrenergic and/or serotonergic system has been focused on as a mechanism of its analgesic action. Here we investigated the role of the spinal dopaminergic neurotransmission in the antinociceptive effect of nefopam administered intravenously or intrathecally. Methods: The effects of intravenously and intrathecally administered nefopam were examined using the rat formalin test. Then we performed a microdialysis study to confirm the change of extracellular dopamine concentration in the spinal dorsal horn by nefopam. To determine whether the changes of dopamine level are associated with the nefopam analgesia, its mechanism was investigated pharmacologically via pretreatment with sulpiride, a dopaminergic D2 receptor antagonist. Results: When nefopam was administered intravenously the flinching responses in phase I of the formalin test were decreased, but not those in phase II of the formalin test were decreased. Intrathecally injected nefopam reduced the flinching responses in both phases of the formalin test in a dose dependent manner. Microdialysis study revealed a significant increase of the level of dopamine in the spinal cord by intrathecally administered nefopam (about 3.8 fold the baseline value) but not by that administered intravenously. The analgesic effects of intrathecally injected nefopam were not affected by pretreatment with sulpiride, and neither were those of the intravenous nefopam. Conclusions: Both the intravenously and intrathecally administered nefopam effectively relieved inflammatory pain in rats. Nefopam may act as an inhibitor of dopamine reuptake when delivered into the spinal cord. However, the analgesic mechanism of nefopam may not involve the dopaminergic transmission at the spinal level.

Xylazine의 진정효과와 α-adrenergic 수용체 봉쇄약물의 길항효과 (Xylazine-induced depression and its antagonism by α-adrenergic blocking agents)

  • 김충희;하대식;김양미;김종수
    • 대한수의학회지
    • /
    • 제33권1호
    • /
    • pp.71-80
    • /
    • 1993
  • The central nervous system depressant effect of xylazine and xylazine-ketamine was studied in chicken and mice. Intraperitoneal injection of xylazine(1~30 mg/kg) and xylazine(1~30 mg/kg)-ketamine(100 mg/kg) induced a loss of the righting reflex in chicken and mice, respectively. These effects of xylazine were dose-dependent. The results obtained were as follows; 1. The effect of xylazine-induced depression was antagonized by adrenergic antagonists having ${\alpha}_2$-blocking activity(yohimbine, tolazoline, piperoxan and phentolamine). 2. Yohimbine was most effective in the reduction of the CNS depression by xylazine. 3. Phenoxybenzamine and prazosin did not reduced CNS depression by xylazine in both species. 4. Labetalol (${\alpha}_1$, ${\beta}_1$-adrenergic antagonist) and propranolol(${\beta}$-adrenergic blocking agent) were not effective in reducing xylazine induced depression. 5. Cholinergic blocking agents (atropine and mecamylamine), a dopaminergic antagonist (Haloperidol), a histamine $H_1$-antagonist(chlorpheniramine), a histamine $H_2$-antagonist(cimetidine), a serotonergic-histamine $H_1$ antagonist(cyproheptadine) were not effective in reducing xylazine-induced depression. 6. Xylazine-induced depression is mediated by ${\alpha}_2$-adrenergic receptors and appears not to be involved in cholinergic, dopaminergic, serotonergic or histaminergic pathways.

  • PDF

Behavioral Sensitization and M1 Muscarinic Acetylcholine Receptor mRNA Expression in Methamphetamine-Administered Mice

  • Kim, Kyung-In;Cho, Jae-Han;Park, Hyun-Jung;Lee, Seok-Yong;Jang, Choon-Gon
    • Biomolecules & Therapeutics
    • /
    • 제12권2호
    • /
    • pp.101-107
    • /
    • 2004
  • Repeated administration of psychostimulants such as amphetamines increases locomotor activity in rodents. These drugs, including methamphetamine, enhance dopaminergic neurotransmission and result in hyper-locomotion and behavioral sensitization. It is well known that the existence of a complex balance between the cholinergic and dopaminergic systems in the central nervous system. Thus, behavioral sensitization by methamphetamine may be related to the expression of the M1 muscarinic acetylcholine receptors gene. The present study investigated the changes of M1R mRNA in hyperlocomotor activity and behavioral sensitization by methamphetamine (2 mg/kg) in mice. Our results showed that M1R mRNA expression was increased in the frontal cortex and the hippocampus region (the CA2 region) in the acute methamphetamine administered group compared to the saline administered group. In the chronic group, M1R mRNA expression was increased in the frontal cortex ill1d the hippocampus regions (CA2 and DG regions) in melt1amphetamine administered group compared to saline control group. These results indicate that acute or chronic treatment of mathamphetamine leads to the region-specific changes in mRNA expression levels of M1R. Therefore, Therefore, the present result suggests that M1R may play a role in modulating of methamphetamine-induced behavioral sensitization in mice.

Effects of (-)-Sesamin on Memory Deficits in MPTP-lesioned Mouse Model of Parkinson's Disease

  • Zhao, Ting Ting;Shin, Keon Sung;Lee, Myung Koo
    • Natural Product Sciences
    • /
    • 제22권4호
    • /
    • pp.246-251
    • /
    • 2016
  • This study investigated the effects of (-)-sesamin on memory deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-lesioned mouse model of Parkinson's disease (PD). MPTP lesion (30 mg/kg/day, 5 days) in mice showed memory deficits including habit learning memory and spatial memory. However, treatment with (-)-sesamin (25 and 50 mg/kg) for 21 days ameliorated memory deficits in MPTP-lesioned mouse model of PD: (-)-sesamin at both doses improved decreases in the retention latency time of the passive avoidance test and the levels of dopamine, norepinephrine, 3,4-dihydroxyphenylacetic acid, and homovanillic acid, improved the decreased transfer latency time of the elevated plus-maze test, reduced the increased expression of N-methyl-D-aspartate (NMDA) receptor, and increased the reduced phosphorylation of extracellular signal-regulated kinase (ERK1/2) and cyclic AMP-response element binding protein (CREB). These results suggest that (-)-sesamin has protective effects on both habit learning memory and spatial memory deficits via the dopaminergic neurons and NMDA receptor-ERK1/2-CREB system in MPTP-lesioned mouse model of PD, respectively. Therefore, (-)-sesamin may serve as an adjuvant phytonutrient for memory deficits in PD patients.

Implications of Circadian Rhythm in Dopamine and Mood Regulation

  • Kim, Jeongah;Jang, Sangwon;Choe, Han Kyoung;Chung, Sooyoung;Son, Gi Hoon;Kim, Kyungjin
    • Molecules and Cells
    • /
    • 제40권7호
    • /
    • pp.450-456
    • /
    • 2017
  • Mammalian physiology and behavior are regulated by an internal time-keeping system, referred to as circadian rhythm. The circadian timing system has a hierarchical organization composed of the master clock in the suprachiasmatic nucleus (SCN) and local clocks in extra-SCN brain regions and peripheral organs. The circadian clock molecular mechanism involves a network of transcription-translation feedback loops. In addition to the clinical association between circadian rhythm disruption and mood disorders, recent studies have suggested a molecular link between mood regulation and circadian rhythm. Specifically, genetic deletion of the circadian nuclear receptor Rev-$erb{\alpha}$ induces mania-like behavior caused by increased midbrain dopaminergic (DAergic) tone at dusk. The association between circadian rhythm and emotion-related behaviors can be applied to pathological conditions, including neurodegenerative diseases. In Parkinson's disease (PD), DAergic neurons in the substantia nigra pars compacta progressively degenerate leading to motor dysfunction. Patients with PD also exhibit non-motor symptoms, including sleep disorder and neuropsychiatric disorders. Thus, it is important to understand the mechanisms that link the molecular circadian clock and brain machinery in the regulation of emotional behaviors and related midbrain DAergic neuronal circuits in healthy and pathological states. This review summarizes the current literature regarding the association between circadian rhythm and mood regulation from a chronobiological perspective, and may provide insight into therapeutic approaches to target psychiatric symptoms in neurodegenerative diseases involving circadian rhythm dysfunction.

COPPER ENHANCEMENT OF L-DOPA-INDUCED OXIDATIVE DNA DAMAGE AND CELL DEATH VIA REDOX CYCLING

  • Lee, Jeong-Sang;Surh, Young-Joan
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2001년도 International Symposium on Dietary and Medicinal Antimutgens and Anticarcinogens
    • /
    • pp.113-113
    • /
    • 2001
  • Dopamine, a principal neurotransmitter in the central nervous system, accounts for 90% of total catecholamines. It serves as a precursor of certain hormones, melanins, noradrenalin and adrenalin. Parkinsonian disease (PD) is characterized by selective loss of dopaminergic neurons in the substantia nigra pars compacta and a significant dimunution in the neostriatal content of dopamine and its metabolites.(omitted)

  • PDF

약물 및 비약물 자극에 의한 도파민 유리 영상 (Imaging of Dopamine Release Induced by Pharmacologic and Nonpharmacologic Stimulations)

  • 조상수;김상은
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제41권2호
    • /
    • pp.158-165
    • /
    • 2007
  • Technological advances in molecular imaging made it possible to image synaptic neurotransmitter concentration in living human brain. The dopaminergic system has been most intensively studied because of its importance in neurological as well as psychiatric disorders. This paper provides a brief overview of recent progress in imaging studies of dopamine release induced by pharmacologic and nonpharmacologic stimulations.

정신분열병 환자의 Tyrosine Hydroxylase 유전자 Intron 1의 VNTR 다형성 (VNTR Polymorphism of Tyrosine Hydroxylase Gene Intron 1 in Schizophrenics)

  • 백인호;도규영;이창욱;김정진;이수정;이철
    • 생물정신의학
    • /
    • 제6권2호
    • /
    • pp.170-175
    • /
    • 1999
  • 가족연구, 쌍생아연구, 양자연구 등은 정신분열병의 발생에 유전적 원인이 작용하고 있음을 보여주고 있으며, 생화학적 연구들은 도파민이 중요한 역할을 하는 것으로 보고하고 있다. 한편, tyrosine hydroxylase(TH)는 도파민의 생성에 속도제한효소로 중요한 작용한다. 따라서 본 연구에서는 TH의 유전적 다형성과 정신분열병의 발생, 임상아형 등과의 관련연구를 시행하였다. 환자군은 가톨릭대학교 강남성모병원에 입원하였던 환자중 정신장애 진단 및 통계를 위한 편람 III-R의 진단기준에 의하여 정신분열병으로 진단된 환자로 신경과 질환이나 다른 정신과적 질환이 없는 374명을 대상으로 하였으며, 대조군은 강남성모병원에서 근무하는 직원, 가톨릭대학교 의과대학생, 그리고 강남성모병원 건강진단센터를 방문한 사람중 지원자를 대상으로 하여 393명을 포함하였다. TH 대립유전자의 분포는 환자군과 대조군 사이에 유의한 차이를 보이지 않았으나, 환자군에서는 양성군인 경우 대립유전자 A형의 빈도가 음성군에 비해 높은 것으로 나타났다. 또한 대립유전자 A형을 가지고 있는 환자군은 A형을 가지고 있지 않은 환자군 보다 유의하게 양성증상점수가 높은 것으로 나타났다. 이상의 결과들은 정신분열병의 양성증상과 TH 대립유전자 A형이 관련되어 있음을 시사해 준다고 하겠다.

  • PDF

6-OHDA 파괴 후 수종의 향정신약물의 작용에 대한 중추도파민 신경계의 역할 (The Role of Dopaminergic Fibers on the Action of Psychotropic Drugs in 6-OHDA-treated Rats)

  • 이순철;유관희
    • Journal of Ginseng Research
    • /
    • 제17권3호
    • /
    • pp.187-195
    • /
    • 1993
  • We have examined the functional role of central dopaminergic processes on the behavioral pharmacological effects induced by psychotropics and red ginseng saponins of normal rats and compared with that of brain damaged rats. Desipramine and clomipramine produced, a significant depression of the locomotor activity in normal rats, but in brain damaged rats, they did not have any effect throughout the experimental period of 4 hours. Total saponin (50~200 mg/kg), PT (25~50 mg/kg), PD (25~50 mg/kg), $Rg_1$(12.5~25 mg/kg), $Rb_1$ (12.5~50 mg/kg) did not change, and high concentrations of PT (100 mg/kg), PD (100 mg/kg) and $Rg_1$ (50 mg/kg) showed a significant decrease in the locomotor activity of one hour after administration but total saponin (100 mg/kg), PD (25~50 mg/kg), Rgl (12.5 mg/kg), $Rb_1$ (12.5 mg/kg) markedly increased the locomotor activity of four hour after administration in normal rats. On the other hand, total saponin (50 mg/kg), PT (100 mg/kg) and PD (100 mg/kg) Produced a prominent stimulation of the locomotor activity in brain damaged rats. These results suggest that the inhibition of the locomotor activity induced by antidepressants was not affected by the sensitivity of cerebral DA system, whereas red ginseng saponin showed antifatigue effect and also the stimulation of the locomotor activity induced by red ginseng saponin was mediated by the inhibition of cerebral DA system. These psychotropic action of red ginseng saponins could be responsible for the beneficial effects on conditions of fatigue and decreased alertness.

  • PDF