• Title/Summary/Keyword: dopaminergic

Search Result 337, Processing Time 0.023 seconds

Role of $\mu$-Opioid Receptors on Neurobehaviors (뇌신경행동에 미치는 $\mu$-opioid 수용체의 역할)

  • Jang, Choon-Gon
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.04a
    • /
    • pp.21-37
    • /
    • 2003
  • 1. Stimulation of dopaminergic system by morphine was abolished in ${\mu}$-opioid receptor knockout mice. 2. Dopaminergic stimulation by opioid agonists, morphine, DPDPE, and U50488, acts independently. 3. Loss of ${\mu}$-opioid receptors is more sensitive to the response of NMDA-induced convulsion and increase in the expression of mRNA for NMDA receptors.

  • PDF

OXIDATIVE DNA DAMAGE AND APOPTOSIS INDUCED BY TETRAHYDROPAPAVEROLINE IN PC12 CELLS

  • Shin, Mi-Hyun;Jang, Jung-Hee;Lee, Jeong-Sang;Surh, Young-Joan
    • Proceedings of the Korean Society of Toxicology Conference
    • /
    • 2001.10a
    • /
    • pp.114-114
    • /
    • 2001
  • Tetrahydropapaveroline (THP), a dopamine-derived 6, 7-dihydroxy-1-(3' ,4'-dihydroxybenzyl)-1,2,3,4-tetrahydroisoquinoline, has been suspected as a possible dopaminergic neurotoxin to elicit Parkinsonism. Autooxidation or enzymatic oxidation of THP and subsequent generation of reactive oxygen species (ROS) may contribute to the degeneration of dopaminergic neurons induced by this isoquinoline alkaloid.(omitted)

  • PDF

Dopaminergic influences on prolactin synthesis and release from rat anterior pituitary cultures

  • Kim, Kwang-Chul;Burkman, Allan
    • Archives of Pharmacal Research
    • /
    • v.3 no.2
    • /
    • pp.85-86
    • /
    • 1980
  • Dopaminergic influences on prolactin release from lactotrophs have been studied using the rat anterior pituitary cell culture. The prolactin inhibiting activity of hypothalamic extracts was examined in relation to dopamine. Dopamine inhibited prolactin secretion from the rat anterior pituitary cell culture in a dose dependent fashion. The median effective dose was $2{\times}10^{-7}$ / M and the maximal inhibition (70-90 % of the control value) was shown by 10$^{-5}$ / M dopamine. Further increase in dopamine concentration did not result in any further inhibition of prolactin secretion.nhibition of prolactin secretion.

  • PDF

Transforming Growth Factor-$\alpha$ Increases the Yield of Functional Dopaminergic Neurons from in vitro Differentiated Human Embryonic Stem Cells Induced by Basic Fibroblast Growth Factor

  • Lee, Keum-Sil;Shin, Hyun-Ah;Cho, Hwang-Yoon;Kim, Eun-Young;Lee, Young-Jae;Wang, Kyu-Chang;Kim, Yong-Sik;Lee, Hoon-Taek;Chung, Kil-Saeng
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.102-102
    • /
    • 2003
  • Embryonic stem (ES) cells proliferate extensively in the undifferentiated state and have the potential to differentiate into a variety of cell types in response to various environmental cues. The generation of functional dopaminergic neurons from ES cells is promising for cell replacement therapy to treat Parkinson's disease. We compared the in vitro differentiation potential of pluripotent human embryonic stem (hES, MB03) cells induced with basic fibroblast growth factor (bFGF) or retinoic acid (RA). Both types of treatment resulted in similar neural cell differentiation patterns at the terminal differentiation stage, specifically, 75% neurons and 11% glial cells. Additionally, treatment of hES cells with brain derived neurotrophic factor (BDNF) or transforming growth factor (TGF)- $\alpha$ during the terminal differentiation stage led to significantly increased tyrosine hydroxylase (TH) expression, compared to control (P<0.05). In contrast, no effect was observed on the rate of mature or glutamic acid decarboxylase-positive neurons. Immunostaining and HPLC analyses revealed the higher levels of TH (20.3%) and dopamine in bFGF and TGF-$\alpha$ treated hES cells than in RA or BDNF treated hES cells. The results indicate that TGF-$\alpha$ may be successfully used in the bFGF induction protocol to yield higher numbers of functional dopaminergic neurons from hES cells.

  • PDF

Effects of the dopaminergic system on release of TSH and thyroid hormone in rats (랫드에서 TSH와 갑상선 호르몬에 미치는 dopamine계의 영향)

  • Lee, Sang-woo;Kim, Jin-sang;Han, Jeong-hee
    • Korean Journal of Veterinary Research
    • /
    • v.32 no.2
    • /
    • pp.165-173
    • /
    • 1992
  • The present study was carried out to investigate the effects of dopaminergic drugs and the role of specific dopamine(DA) receptors on the release of TSH, $T_4$ and $T_3$. Serum TSH levels (cold-induced, $4{^{\circ}C}$) were determined using RIA(radioimmunoassay) at 30 min after administration of dopamine agonists and antagonists. Serum $T_4$ and $T_3$ levels were detected after these dopaminergic drugs were administered subcutaneously twice a day for a week. The results of the study are summarized as follows : Apomorphine, a nonspecific DA receptor agonist, produced a dose-depedent decrease in serum TSH, $T_4$ and $T_3$ levels. However, only low doses (0.3, 1.0mg/kg) of SKF38393, a specific $D_1$-receptor agonist, produced a decrease in serum lelvels of TSH. I,Y171555, a specific $D_2$-receptor agonist, produced a dose dependent decrease in serum TSH, $T_4$ and $T_3$ levels. However, SCH23390, a specific $D_1$-receptor antagonist, produced a decrease except in serum T levels which were increased dose dependently. High doses (1.0, 3.0mg/kg) of sulpiride, a specific $D_2$-receptor antagonist, made a increase in the serum levels of TSH and $T_3$. The effects of dopaminergic drugs in serum TSH and $T_4$ levels was potentiated by the pretreatment of apomorphine. The overall results of this study suggest that the regulation of TSH, $T_4$ and $T_3$ secretion were mediated via specific $D_1$ and $D_2$ receptor.

  • PDF

Protective Effects of Celastrol, the Triterpenoid Component of Celastrus Orbiculatus, on Dopaminergic Neuronal Cells in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned Parkinson's Disease Rats (노박덩굴에 함유된 celastrol 성분의 파킨슨병을 유발시킨 쥐에서의 도파민 신경세포 보호효과)

  • Lee, Kap-Duk;Kim, Kwang-Jin;Park, Yong-Ki
    • The Journal of Korean Medicine
    • /
    • v.29 no.4
    • /
    • pp.94-103
    • /
    • 2008
  • Objectives: The aim of this study was to determine whether celastrol, the triterpenoid component of Celastrus orbiculatus, offers neuroprotection against Parkinson's disease (PD) in mice administered 1-methyl-4-phenyl-1,2,3,6- tetrahydropyridine(MPTP). Methods: We examined how celastrol affected MPTP-induced neuronal loss of tyrosine hydroxylase (TH)-positive dopaminergic neurons in substantia nigra pars compacta (SNpc) in the midbrain of mice. C57BL/6J mice were divided into four groups: (1) saline-saline, (2) saline-celastrol, (3) MPTP-saline, and (4) MPTP-celastrol. The mice were injected intraperitoneally (i.p.) with four administrations of MPTP (18mg/kg) at 2 h intervals and then i.p. administered celastrol (3mg/kg) two times at 12 h after last celastrol administration. Expression of TH on the SNpc of brain tissues were analyzed at 7 days after the treatments by immunohistochemistry and Western blot. Results: Immunohistochemical analysis using TH antibody showed that celastrol provided significantly protective effects against MPTP-induced loss of TH-positive dopaminergic neurons in the SNpc region of the midbrain of mice. Our Western blot study also showed that celastrol significantly inhibits the MPTP-induced neuronal damage via the up-regulation of TH protein levels in MPTP mice. Conclusions: The present results suggest that it may be possible to use celastrol for the prevention of nigral degenerative disorders including PD, caused by exposure to toxic substances.

  • PDF

Dopaminergic Regulation of Gonadotropin-II Secretion in Testosterone-treated Precocious Male and Immature Rainbow Trout Oncorhynchus mykiss

  • Kim, Dae-Jung;Aida, Katsumi
    • Animal cells and systems
    • /
    • v.4 no.3
    • /
    • pp.287-292
    • /
    • 2000
  • The present work examined the role of gonadotropin-releasing hormone (GnRH) and dopaminergic drugs on the secretion of maturational gonadotropin (GTH II) in relation to testosterone m treatment. This study provides evidence that the plasma GTH II levels are increased by T treatment in precocious males, but not in the immature animal. In addition, GnRH analogue (GnRHa) alone significantly increased the plasma GTH II secretion in immature rainbow trout treated with T, as well as in T-treated and T-untreated precocious males. However, injection with either dopamine (DA) or domperidone (DOM; DA D2 receptor antagonist) alone did not alter the basal plasma GTH 11 secretion in all experimental groups. The secretion of GTH II in the T-treated precocious males was remarkably influenced by GnRHa or combination of dopaminergic drugs. Notably, the effects of dopaminergic drugs on GnRHa-induced GTH II secretion w8s prolonged by T in precocious males. In T-treated immature animals, GnRHa-induced GTH II secretion was Increased only by a dose DOM (10$\mu$g/g body n) but not by higher dose DOM (100$\mu$/g body wt). In the T-untreated immature rainbow trout, however, plasma GTH 11 secretion was not influenced by the same treatments. Therefore, these results indicate that DA may be acting indirectly by blocking the effect of GnRH on GTH II secretion in vivo. T may act to modulate the relative contribution by the stimulatory (GnRH) and inhibitory (DA) neuroendocrine factors, which would ultimately determine the pattern of GTH II secretion.

  • PDF

Neurogenesis and neuronal migration of dopaminergic neurons during mesencephalon development in mice

  • Kim, Mun-ki;Lee, Si-Joon;Vasudevan, Anju;Won, Chungkil
    • Journal of Biomedical and Translational Research
    • /
    • v.19 no.4
    • /
    • pp.125-129
    • /
    • 2018
  • Dopaminergic neurons are one of the major neuronal components in the brain. Mesencephalon dopamine (DA) neurogenesis takes place in the ventricular zone of the floor plate, when DA progenitors divide to generate postmitotic cells. These cells migrate through the intermediate zone while they differentiate and become DA neurons on reaching the mantle zone. However, neurogenesis and neuronal migration on dopaminergic neurons remain largely unexplored in the mesencephalon development. This study presents neurogenesis and neuronal migration patterns of dopaminergic neurons during mesencephalic development of the mouse. Neurons from embryonic day (E) 10-14 were labelled by a single injection of 5-bromodeoxyuridine and immunohistochemistry was performed. The neurogenesis occurred mainly at the E10 and E11, which was uniformly distributed in the mesencephalic region, but neurons after E13 were observed only in the dorsal mesencephalon. At the postnatal day 0 (P0), E10 generated neurons were spread out uniformly in the whole mesencephalon whereas E11-originated neurons were clearly depleted in the red nucleus region. DA neurons mainly originated in the ventromedial mesencephalon at the early embryonic stage especially E10 to E11. DA neurons after E12 were only observed in the ventral mesencephalon. At E17, E10 labelled neurons were only observed in the substantia nigra (SN) region. Our study demonstrated that major neurogenesis occurred at E10 and E11. However, neuronal migration continued until neonatal period during mesencephalic development.

Ameliorative Effects of NXP031 on MPTP-Induced Neurotoxicity (MPTP로 유도된 신경 독성에 대한 NXP031의 개선 효과)

  • Lee, Joo Hee;Song, Min Kyung;Kim, Youn-Jung
    • Journal of Korean Biological Nursing Science
    • /
    • v.23 no.3
    • /
    • pp.199-207
    • /
    • 2021
  • Purpose: The purpose of this study was to investigate effects of NXP031, an inhibitor of oxidation by specifically binding to the complex of DNA aptamer/vitamin C, on dopaminergic neurons loss and the reaction of microglia in an animal model of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced subchronic Parkinson's disease (PD). Methods: A subchronic PD mouse model was induced via an intraperitoneal (IP) injection of MPTP 30 mg/kg per day for five days. NXP031 (vitamin C/aptamer at 200 mg/4 mg/kg) and vitamin C at 200 mg/kg were administered via IP injections at one hour after performing MPTP injection. This process was performed for five days. Motor function was then evaluated with pole and rotarod tests, after which an immunohistochemical analysis was performed. Results: NXP031 administration after MPTP injection significantly improved motor functions (via both pole and rotarod tests) compared to the control (MPTP injection only) (p<.001). NXP031 alleviated the loss of dopaminergic neurons in the substantia nigra (SN) and striatum caused by MPTP injection. It was found to have a neuroprotective effect by reducing microglia activity. Conclusion: NXP031 can improve impaired motor function, showing neuroprotective effects on dopaminergic neurons in the SN and striatum of MPTP-induced subchronic Parkinson's disease mouse model. Results of this study suggest that NXP031 has potential in future treatments for PD and interventions for nerve recovery.