• 제목/요약/키워드: donor cell

검색결과 522건 처리시간 0.023초

광활성층 사용물질에 따라 변화하는 유기태양전지의 효율 (Trend Efficiency of Organic Solar Cells with Respect to the Types of Photoactive Layer)

  • 김유은;김기환
    • 한국전기전자재료학회논문지
    • /
    • 제35권6호
    • /
    • pp.581-593
    • /
    • 2022
  • As energy depletion and environmental pollution problems are intensified, research has been conducted actively on alternative energy sources, an eco-friendly and continuous available energy conversion system. So has been organic solar cells whose efficiency is improved to 18.32%. The photoactive layer inside the solar cell is composed of a donor and a acceptor, and the combination of materials capable of effectively exchanging electrons greatly affects the efficiency of the organic solar cell. Accordingly, various researches have been conducted to improve the efficiency, and the maximum efficiency could be achieved by a solar cell with high carrier generation and low charge recombination characteristics through the introduction of a non-fullerene acceptor and material reconstruction. Organic solar cells are still difficult to commercialize due to their efficiency limitations and light stability, but if a photoactive layer consisting of a donor capable of efficiently absorbing long-wavelength light and an acceptor capable of forming an appropriate energy level is designed, the efficiency of the organic solar cell will reach 20%.

Influences of somatic donor cell sex on in vitro and in vivo embryo development following somatic cell nuclear transfer in pigs

  • Yoo, Jae-Gyu;Kim, Byeong-Woo;Park, Mi-Rung;Kwon, Deug-Nam;Choi, Yun-Jung;Shin, Teak-Soon;Cho, Byung-Wook;Seo, Jakyeom;Kim, Jin-Hoi;Cho, Seong-Keun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권4호
    • /
    • pp.585-592
    • /
    • 2017
  • Objective: The present study investigates pre- and post-implantation developmental competence of nuclear-transferred porcine embryos derived from male and female fetal fibroblasts. Methods: Male and female fetal fibroblasts were transferred to in vitro-matured enucleated oocytes and in vitro and in vivo developmental competence of reconstructed embryos was investigated. And, a total of 6,789 female fibroblast nuclear-transferred embryos were surgically transferred into 41 surrogate gilts and 4,746 male fibroblast nuclear-transferred embryos were surgically transferred into 25 surrogate gilts. Results: The competence to develop into blastocysts was not significantly different between the sexes. The mean cell number of female and male cloned blastocysts obtained by in vivo culture ($143.8{\pm}10.5$ to $159.2{\pm}14.8$) was higher than that of in vitro culture of somatic cell nuclear transfer (SCNT) groups ($31.4{\pm}8.3$ to $33.4{\pm}11.1$). After embryo transfer, 5 pregnant gilts from each treatment delivered 15 female and 22 male piglets. The average birth weight of the cloned piglets, gestation length, and the postnatal survival rates were not significantly different (p<0.05) between sexes. Conclusion: The present study found that the sex difference of the nuclear donor does not affect the developmental rate of porcine SCNT embryos. Furthermore, postnatal survivability of the cloned piglets was not affected by the sex of the donor cell.

수핵란의 전 활성화가 토끼 핵이식 수정란의 핵 재구성에 미치는 효과 (Effect of Electrical Preactivation of Recipient Cytoplasm on Nuclear Remodelling in Nuclear Transplant Rabbit Embryos)

  • 전병균;김윤연;정기화;곽대오;이효종;최상용;박충생
    • 한국가축번식학회지
    • /
    • 제21권3호
    • /
    • pp.229-238
    • /
    • 1997
  • Chromosome condensation and swelling of the donor nucleus have been known as the early morphological indicators of chromatin remodelling after injection of a foreign nucleus into an enucleated recipient cytoplasm. The effects of non-preactivation and electrical preactivation of recipient cytoplasm, prior to fusing a donor nucleus, on the profile of nuclear remodelling in the nuclear transplant rabbit embryos were evaluated. The embryos of 16-cell stage were collected and synchronized to G1 phase of 32-cell stage. The recipient cytoplasms were obtained by removing the first polar body and chromosome mass by non-disruptive microsurgical procedure. The separated G1 phase blastomeres of 32-cell stage were injected into non-preactivated recipient cytoplasms. Otherwise, the enucleated recipient cytoplasms were preactivated by electrical stimulation and the separated G1 phase blastomeres of 32-cell stage were injected. After culture until 20h post-hCG injection, the nuclear transplant oocytes were electrofused by electrical stimulation. The nuclei of nuclear transplant embryos fused into non-preactivated and/or preactivated recipient cytoplasm were stained by Hoechst 33342 at 0, 1.5, 2, 4, 6, 8, 10 hrs post-fusion and were observed under an fluorescence microscopy. Accurate measurements of nuclear diameter were revealed with an ocular micrometer at 200$\times$. Upon blastomere fusion into non-preactivated recipient cytoplasm, a prematurely chromosome condensation at 1.5 hrs post-fusion and nuclear swelling at 8 hrs post-fusion were occurred as 91.6% and 86.1%, respectively. But the nuclei of nuclear transplant embryos fused into preactivated recipient cytoplasm, as o, pp.sed to non-preactivated recipient cytoplasm, were not occurred chromosome condensation and extensive nuclear swelling. Nuclear diameter fused into non-preactivated and preactivated recipient cytoplasm at hrs post-fusion was 30.2$\pm$0.74 and 15.2$\pm$1.32${\mu}{\textrm}{m}$, respectively. These results indicated that onset of unclear condensation and swelling which was associated with oocytes activation were critical steps in the process of chromatin swelling. Futhermore, complete reprogramming seemed only possible after remodelling of the donor nucleus by chromosome condensation and nuclear swelling.

  • PDF

The Question of Abnormalities in Mouse Clones and ntES Cells

  • Wakayama, Teruhiko
    • 한국발생생물학회:학술대회논문집
    • /
    • 한국발생생물학회 2003년도 제3회 국제심포지움 및 학술대회
    • /
    • pp.7-8
    • /
    • 2003
  • Since it was first reported in 1997, somatic cell cloning has been demonstrated in several other mammalian species. On the mouse, it can be cloned from embryonic stem (ES) cells, fetus-derived cells, and adult-derived cells, both male and female. While cloning efficiencies range from 0 to 20%, rates of just 1-2% are typical (i.e. one or two live offspring per one hundred initial embryos). Recently, abnormalities in mice cloned from somatic cells have been reported, such as abnormal gene expression in embryo (Boiani et al., 2001, Bortvin et al., 2003), abnormal placenta (Wakayama and Yanagimachi 1999), obesity (Tamashiro et ai, 2000, 2002) or early death (Ogonuki et al., 2002). Such abnormalities notwithstanding, success in generating cloned offspring has opened new avenues of investigation and provides a valuable tool that basic research scientists have employed to study complex processes such as genomic reprogramming, imprinting and embryonic development. On the other hand, mouse ES cell lines can also be generated from adult somatic cells via nuclear transfer. These 'ntES cells' are capable of differentiation into an extensive variety of cell types in vitro, as well assperm and oocytes in vivo. Interestingly, the establish rate of ntES cell line from cloned blastocyst is much higher than the success rate of cloned mouse. It is also possible to make cloned mice from ntES cell nuclei as donor, but this serial nuclear transfer method could not improved the cloning efficiency. Might be ntES cell has both character between ES cell and somatic cell. A number of potential agricultural and clinical applications are also are being explored, including the reproductive cloning of farm animals and therapeutic cloning for human cell, tissue, and organ replacement. This talk seeks to describe both the relationship between nucleus donor cell type and cloning success rate, and methods for establishing ntES cell lines. (중략)

  • PDF

Methyl Donor Status Influences DNMT Expression and Global DNA Methylation in Cervical Cancer Cells

  • Poomipark, Natwadee;Flatley, Janet E;Hill, Marilyn H;Mangnall, Barbara;Azar, Elnaz;Grabowski, Peter;Powers, Hilary J
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권7호
    • /
    • pp.3213-3222
    • /
    • 2016
  • Background: Methyl donor status influences DNA stability and DNA methylation although little is known about effects on DNA methyltransferases. The aim of this study was to determine whether methyl-donor status influences DNA methyltransferase (Dnmt) gene expression in cervical cancer cells, and if so, whether there are associated effects on global DNA methylation. Materials and Methods: The human cervical cancer cell line, C4-II, was grown in complete medium and medium depleted of folate (F-M+) and folate and methionine (F-M-). Growth rate, intracellular folate, intracellular methionine and homocysteine in the extracellular medium were measured to validate the cancer cell model of methyl donor depletion. Dnmt expression was measured by qRT-PCR using relative quantification and global DNA methylation was measured using a flow cytometric method. Results: Intracellular folate and methionine concentrations were significantly reduced after growth in depleted media. Growth rate was also reduced in response to methyl donor depletion. Extracellular homocysteine was raised compared with controls, indicating disturbance to the methyl cycle. Combined folate and methionine depletion led to a significant down-regulation of Dnmt3a and Dnmt3b; this was associated with an 18% reduction in global DNA methylation compared with controls. Effects of folate and methionine depletion on Dnmt3a and 3b expression were reversed by transferring depleted cells to complete medium. Conclusions: Methyl donor status can evidently influence expression of Dnmts in cervical cancer cells, which is associated with DNA global hypomethylation. Effects on Dnmt expression are reversible, suggesting reversible modulating effects of dietary methyl donor intake on gene expression, which may be relevant for cancer progression.

Properties of Photovoltaic Cell using ZnPc/C60 Double Layer Devices

  • Lee, Ho-Sik;Seo, Dae-Shik;Lee, Won-Jae;Jang, Kyung-Uk;Kim, Tae-Wan;Lee, Sung-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • 제6권3호
    • /
    • pp.124-127
    • /
    • 2005
  • It has been a long time since organic solar cells were expected as a low-cost energy-conversion device. Although practical use of them has not been achieved, technological progress continues. Morphology of the materials, organic/inorganic interface, metal cathodes, molecular packing and structural properties of the donor and acceptor layers are essential for photovoltaic response. We have fabricated solar cell devices based on zinc-phthalocyanine(ZnPc) as donor(D) and fullerene$(C_60)$ as electron acceptor(A) with doped charge transport layers, and BCP and $Alq_3$ as an exciton blocking layer(EBL). We have measured the photovoltaic characteristics of the solar cell devices using the Xe lamp as a light source. We were use of $Alq_3$ layer leads to external power conversion efficiency was $2.65\%$ at illumination intensity $100\;mW/cm^2$. Also we confirmed the optimum thickness ratio of the DA hetero-junction is about 1:2.

The Role of Protein Kinases in Reprogramming and Development of SCNT Embryos

  • Choi, Inchul;Campbell, Keith H.S.
    • 한국수정란이식학회지
    • /
    • 제30권1호
    • /
    • pp.33-43
    • /
    • 2015
  • Successful somatic cell nuclear transfer (SCNT) has been reported across a range of species using a range of recipient cells including enucleated metaphase II (MII) arrested oocytes, enucleated activated MII oocytes, and mitotic zygotes. However, the frequency of development to term varies significantly, not only between different cytoplast recipients but also within what is thought to be a homogenous population of cytoplasts. One of the major differences between cytoplasts is the activities of the cell cycle regulated protein kinases, maturation promoting factor (MPF) and mitogen activated protein kinase (MAPK). Dependent upon their activity, exposure of the donor nucleus to these kinases can have both positive and negative effects on subsequent development. Co-ordination of cell cycle stage of the donor nucleus with the activities of MPF and MAPK in the cytoplast is essential to avoid DNA damage and maintain correct ploidy. However, recent information suggests that these kinases may also effect reprogramming of the somatic nucleus and preimplantation embryo development by other mechanisms. This article will summarise the differences between cytoplast recipients, their effects on development and discuss the potential role/s of MPF and or MAPK in nuclear reprogramming.

신장이식 분야의 세포 면역치료 (Cell Therapy in Kidney Transplantation)

  • 전희중;양재석
    • 대한이식학회지
    • /
    • 제28권3호
    • /
    • pp.121-134
    • /
    • 2014
  • Current immunosuppressants have nonspecific immuosuppressive effects, and are not helpful for tolerance induction. Consequently, transplant patients cannot discontinue using them, and their nonspecific immunosuppressive effects result in many side effects, including infection and malignancy. However, most of cellular immunotherapy can have donor antigen-specific immunsuppressive effects. Therefore, cell therapy could be an alternative or adjunctive to nonspecific immunosuppressants. Polyclonal or antigen-specific Foxp3+ regulatory T cells have been actively tried for prevention of acute rejection, treatment of chronic rejection, or tolerance induction in clinical trials. Regulatory macrophages are also under clinical trials for kidney transplant patients. IL-10-secreting type 1 regulatory T cells and donor- or recipient-derived tolerogenic dendritic cells will also be used for immunoregulation in clinical trials of kidney transplantation. These cells have antigen-specific immunoregulatory effects. Mesenchymal stromal cells (MSCs) have good proliferative capacity and immunosuppressive actions independently of major histocompatibility complex; therefore, even third-party MSCs can be stored and used for many patients. Cell therapy using various immunoregulatory cells is now promising for not only reducing side effects of nonspecific immunosuppressants but also induction of immune tolerance, and is expected to contribute to better outcomes in transplant patients.

소 수정란의 세포주기조절 핵이식에 의한 재구축배의 세포학적 특성 (Cytogenetic Properties of Bovine Reconstituted Embryos by Cell Cycle-Controlled Nuclear Transfer)

  • 정희태;박춘근;양부근;김정익
    • 한국가축번식학회지
    • /
    • 제23권3호
    • /
    • pp.271-278
    • /
    • 1999
  • 본 연구는 핵이식 기술에 의한 재구축 배의 작성과정에서 핵의 세포주기단계에 따른 재구축 배의 염색체의 핵상변화를 검토하고, 염색체의 핵상변화와 핵이식란의 체외발육과의 관계를 검토하였다. 공핵란은 nocodazole 처리에 의해 분할구가 분열기에 정지되도록 한 후, 분열개시 1.5 시간 이내, 분열 후 3 시간째 핵 및 무처리 분할구 핵올 활성화 전 (metaphase-II기 : M II기 ), 후 (S 기)의 탈핵 미수정란 세포질에 이식하였다. MII기 수핵란에 핵이식 된 재구축 배의 극체상 방출, 미성숙 염색체응축, 염색질구조 변화 등과 같은 핵형 변화 형태 및 재구축 배의 발육능은 핵의 세포주기 단계에 의해 영향을 받았으며, 극체상 방출 유무에 따라서도 재구축 배의 발육율에 차이가 있었다. S기 수핵란에 핵이식 된 경우에는 이식된 핵의 형태변화가 거의 없었다. 본 연구의 결과는 재구축 배의 핵형 변화가 핵 및 세포질의 세포주기단계에 따라 다양하며, 이것이 핵이식 재구축 배의 발육에 영향을 미칠 수 있음을 확증한다.

  • PDF

Regulation of BDNF release in dopaminergic neurons

  • 전홍성
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2003년도 생물공학의 동향(XII)
    • /
    • pp.743-746
    • /
    • 2003
  • The major pathological lesion in Parkinson's disease(PD) is selective degeneration and loss of pigmented dopaminergic neurons in substantia nigra (SN). Although the initial cause and subsequent molecular signaling mechanisms leading to the dopaminergic cell death underlying the PD process is elusive, the potent neurotrophic factors (NTFs), brain derived neurotrophic factor (BDNF) and glial cell line derived neurotrophic factor (GDNF), are known to exert dopaminergic neuroprotection both in vivo and in vitro models of PD employing the neurotoxin, MPTP. BDNF and its receptor, trkB are expressed in SN dopaminergic neurons and their innervation target. Thus, neurotrophins may have autocrine, paracrine and retrograde transport effects on the SN dopaminergic neurons. This study determined the BDNF secretion from SN dopaminergic neurons by ELISA. Regulation of BDNF synthesis/release and changes in signaling pathways are monitored in the presence of free radical donor, NO donor and mitochondrial inhibitors. Also, this study shows that BDNF is able to promote survival and phenotypic differentiation of SN dopaminergic neurons in culture and protect them against MPTP-induced neurotoxicity via MAP kinase pathway.

  • PDF