Browse > Article
http://dx.doi.org/10.4313/JKEM.2022.35.6.7

Trend Efficiency of Organic Solar Cells with Respect to the Types of Photoactive Layer  

Kim, Yu-Eun (School of Materials Science and Engineering, Gyeongsang National University)
Kim, Gi-Hwan (School of Materials Science and Engineering, Gyeongsang National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.35, no.6, 2022 , pp. 581-593 More about this Journal
Abstract
As energy depletion and environmental pollution problems are intensified, research has been conducted actively on alternative energy sources, an eco-friendly and continuous available energy conversion system. So has been organic solar cells whose efficiency is improved to 18.32%. The photoactive layer inside the solar cell is composed of a donor and a acceptor, and the combination of materials capable of effectively exchanging electrons greatly affects the efficiency of the organic solar cell. Accordingly, various researches have been conducted to improve the efficiency, and the maximum efficiency could be achieved by a solar cell with high carrier generation and low charge recombination characteristics through the introduction of a non-fullerene acceptor and material reconstruction. Organic solar cells are still difficult to commercialize due to their efficiency limitations and light stability, but if a photoactive layer consisting of a donor capable of efficiently absorbing long-wavelength light and an acceptor capable of forming an appropriate energy level is designed, the efficiency of the organic solar cell will reach 20%.
Keywords
Organic solar cell; Photoelectric efficiency; Photoactive layer;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 G. Yu, J. Gao, J. C. Hummelen, F. Wudl, and A. J. Heeger, Science, 270, 1789 (1995). [DOI: https://doi.org/10.1126/science.270.5243.1789]   DOI
2 J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, Appl. Phys. Lett., 84, 3013 (2004). [DOI: https://doi.org/10.1063/1.1713036]   DOI
3 T. U. Gang, T. S, Kim, and B. J. Kim, Information Display, 16, 4 (2015).
4 Q. An, J. Wang, X. Ma, J. Gao, Z. Hu, B. Liu, H. Sun, X. Guo, X. L. Zhang, and F. Zhang, Energy Environ. Sci., 13, 5039 (2020). [DOI: https://doi.org/10.1039/d0ee02516j]   DOI
5 J. H. Lee, I. S. Sin and S. H. Park, Polym. Sci. Technol., 23, 386 (2012).
6 T. Xu and L. Yu, Mater. Today, 17, 11 (2014). [DOI: https://doi.org/10.1016/j.mattod.2013.12.005]   DOI
7 H. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, Nat. Photonics, 3, 649 (2009). [DOI: https://doi.org/10.1038/NPHOTON.2009.192]   DOI
8 Z. He, C. Zhong, S. Su, M. Xu, H. Wu, and Y. Cao, Nat. Photonics, 6, 591 (2012). [DOI: https://doi.org/10.1038/nphoton.2012.190]   DOI
9 S. H. Liao, H. J. Jhuo, Y. S. Cheng, and S. A. Chen, Adv, Mater., 25, 4766 (2013). [DOI: https://doi.org/10.1002/adma.201301476]   DOI
10 J. Peet, J. Y. Kim, N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C. Bazan, Nat. Mater., 6, 497 (2007). [DOI: https://doi.org/10.1038/NMAT1928]   DOI
11 W. Zhao, D. Qian, S. Zhang, S. Li, O. Inganas, F. Gao, and J. Hou, Adw, Mater., 28, 4734 (2016). [DOI: https://doi.org/10.1002/adma.201600281]   DOI
12 Y. Yang, Z. G. Zhang, H. J. Bin, S. Chen, L. Gao, L. Xue, C. Yang, and Y. Li, J. Am. Chem. Soc., 138, 15011 (2016). [DOI: https://doi.org/10.1021/jacs.6b09110]   DOI
13 R. Sun, Q. Wu, J. Guo, T. Wang, Y. Wu. B. Oiu, Z. Luo, W. Yang, Z. Hu, J. Guo, M. Shi, C. Yang, F. Huang, Y. Li, and J. Min, Joule., 4, 407 (2020). [DOI: https://doi.org/10.1016/j.joule.2019.12.004]   DOI
14 Q. Guo, Q. Guo, Y. Geng, A. Tang, M. Zhang, M. Du, X. Sun, and E. Zhou, Mater. Chem. Front., 5, 3257 (2021). [DOI: https://doi. org/10.1039/D1QM00060H]   DOI
15 C. Li, J. Zhou, J. Song, J. Xu, H. Zhang, X. Zhang, J. Guo, L. Zhu, D. Wei, G. Han, J. Min, Y. Zhang, Z. Xie, Y. Yi, H. Yan, F. Gao, F. Liu, and Y. Sun, Nat. Energy., 6, 605 (2021). [DOI: https://doi.org/10.1038/s41560-021-00820-x]   DOI
16 L. Zhu, W. Zhong, C. Qiu, B. Lyu, Z. Zhou, M. Zhang, J. Song, J. Xu, J. Wang, J. Ali, W. Feng, Z. Shi, X, Gu, L. Ying, Y. Zhang, and F. Liu, Adv. Mater., 31, 1902899 (2019). [DOI: https://doi.org/10.1002/adma.201902899]   DOI
17 J. W. Lee, KIC News., 24, 134 (2021).
18 F. Padinger, R. S. Rittberger, and N. S. Sariciftci, Adv, Funct, Mater., 13, 85 (2003). [DOI: https://doi.org/10.1002/adfm.200390011]   DOI
19 X. Xu, T. Yu, Z. Bi, W. Ma, Y. Li, and Q. Peng, Adv. Mater., 30, 1703973 (2018). [DOI: https://doi.org/10.1002/adma.201703973]   DOI
20 R. Zhou, Z. Jiang, C. Yang, J. Yu, J. Feng, M. A. Adil, D. Deng, W. Zou, J. Zhang, K. Lu, W. Ma, F. Gao, and Z. Wei, Nat. Commun., 10, 5393 (2019). [DOI: https://doi.org/10.1038/s41467-019-13292-1]   DOI
21 L. Dou, J. You, J. Yang, C. C. Chen, Y. He, S. Murase, T. Moriarty, K. Emery, G. Li, and Y. Yang, Nat. Photonics, 6, 180 (2012). [DOI: https://doi.org/10.1038/nphoton.2011.356]   DOI
22 J. Yuan, Y. Zhang, L. Zhou, G. Zhang, H. L. Yip, T. K. Lau, X. Lu, C. Zhu, H. Peng, P. A. Johnson, M. Leclerc, Y. Cao, J. Ulanski, Y. Li, and Y. Zou, Joule, 3, 1140 (2019). [DOI: https://doi.org/10.1016/j.joule.2019.01.004]   DOI
23 G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nat. Mater., 4, 864 (2005). [DOI: https://doi.org/10.1038/nmat1500]   DOI
24 H. Bin, Z. G. Zhang, L. Gao, S. Chen, L. Zhong, L. Xue, C. Yang, and Y. Li, J. Am. Chem. Soc., 138, 4657 (2016). [DOI: https://doi.org/10.1021/jacs.6b01744]   DOI
25 H. Hoppe and N. S. Sariciftci, J. Mater. Res., 19, 1924 (2004). [DOI: https://doi.org/10.1557/JMR.2004.0252]   DOI
26 KiSTi, Korea Institute of Science and Technology Information., 93560 (2017).
27 G. G. Kim, Bulletin of the Korea Photovoltaic Society., 3, 17 (2017).
28 S. H. Jin and S. S. Shin, Polymer Science and Technology., 17, 416 (2006).
29 K. H. Hong, S. Y. Park, and D. C. Lim, Appl. Chem. Eng., 25, 447 (2014). [DOI: https://doi.org/10.14478/ace.2014.1110]   DOI
30 H. S. Choi and J. Y. Kim, J. Photopolym. Sci. Technol., 23, 361 (2012).
31 C. W. Tang, Appl. Phys. Lett., 48, 183 (1986). [DOI: https://doi.org/10.1063/1.96937]   DOI
32 P. Peumans and S. R. Forrest, Appl. Phys. Lett., 79, 126 (2001). [DOI: https://doi.org/10.1063/1.1384001]   DOI
33 W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Funct. Mater., 15, 1617 (2005). [DOI: https://doi.org/10.1002/adfm.200500211]   DOI
34 J. Subbiah, B. Purushothaman, M. Chen, T. Qin, M. Gao, D. Vak, F. H. Scholes, X. Chen, S. E. Watkins, G. J. Wilson, A. B. Holmes, W.W.H. Wong, and D. J. Jones, Adv. Mater., 27, 702 (2015). [DOI: https://doi.org/10.1002/adma.201403080]   DOI
35 I. H. Kim, Molecular design of donor-acceptor small conjugated molecules and polymers for organic solar cells, 38p. (2015).
36 B. S. Kim, J. Korean Inst. Electr. Electron. Mater. Eng., 28, 10 (2015).
37 G. H. Lee, Optical Science and Technology, 16, 18 (2012).
38 D. C. Lim, J. U. Kang, and S.Y. Park, State of the Art Report., 23, 6 (2011).
39 M. Granstrom, K. Petritsch, A. C. Arias, A. Lux, M. R. Andersson, and R. H. Friend, Nature, 395, 257 (1998). [DOI: https://doi.org/10.1038/26183]   DOI
40 J. D. Chen, C. Cui, Y. Q. Li, L. Zhou, Q. D. Ou, C. Li, Y. Li, and J. X. Tang, Adv. Mater., 27, 1035 (2015). [DOI: https://doi.org/10.1002/adma.201404535]   DOI
41 W. Zhao, S. Li, S. Zhang, X. Liu, and J. Hou, Adv. Mater., 29, 1604059 (2016). [DOI: https://doi.org/10.1002/adma.201604059]   DOI
42 Y. Xiao, H. Wang, S. Zhou, K. Yan, W. Xie, Z. Guan, S. W. Tsang, and J. B. Xu, Nano Energy, 19, 476 (2016). [DOI: https://doi.org/10.1016/j.nanoen.2015.11.016]   DOI
43 N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R. Neagu-Plesu, M. Belletete, G. Durocher, Y. Tao, and M. Leclerc, J. Am. Chem. Soc., 130, 732 (2008). [DOI: https://doi.org/10.1021/ja0771989]   DOI