• Title/Summary/Keyword: dominant failure mode

Search Result 54, Processing Time 0.028 seconds

Application of fiber element in the assessment of the cyclic loading behavior of RC columns

  • Sadjadi, R.;Kianoush, M.R.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.3
    • /
    • pp.301-317
    • /
    • 2010
  • This paper studies the reliability of an analytical tool for predicting the lateral load-deformation response of RC columns while subjected to lateral cyclic displacements and axial load. The analytical tool in this study is based on a fiber element model implemented into the program DRAIN-2DX (fiber element). The response of RC column under cyclic displacement is defined by the behavior of concrete, and reinforcing steel under general reversed-cyclic loading. A tri-linear stress-strain relationship for the cyclic behavior of steel is proposed and the improvement in the analytical results is studied. This study only considers the behavior of columns with flexural dominant mode of failure. It is concluded that with the implementation of appropriate constitutive material models, the described analytical tools can predict the response of the columns with reasonable accuracy when compared to experimental data.

Lifetime Estimation for FPCB of Slide mobile phone (슬라이드형 휴대폰 FPCB(Flexible Printed Circuit Board)의 수명예측)

  • Choi, Jin-Young;Chang, Seog-Weon;Kwack, Kae-Dal
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1283-1288
    • /
    • 2008
  • The FPCB is used as the important component of the sliding mechanism of mobile phones. FPCB have been used as jumper cables(fixed wiring) in various types of circuits because of their flexibility and bending property. The dominant failure mode of the FPCB is open that was caused by fatigue. The fatigue is repeated whenever the sliding is open, so it is a mainly cause of FPCB fatigue. We examined the bending-fatigue lifetime of FPCB. we focused on observing the contact resistance degradation of FPCB of mobile phones according to different test condition of bending strain. As a result, it has proved that lifetime decreased by increasing bending strain.

  • PDF

Seismic performance of CFS shear wall systems filled with polystyrene lightweight concrete: Experimental investigation and design methodology

  • Mohammad Rezaeian Pakizeh;Hossein Parastesh;Iman Hajirasouliha;Farhang Farahbod
    • Steel and Composite Structures
    • /
    • v.46 no.4
    • /
    • pp.497-512
    • /
    • 2023
  • Using light weight concrete as infill material in conventional cold-formed steel (CFS) shear wall systems can considerably increase their load bearing capacity, ductility, integrity and fire resistance. The compressive strength of the filler concrete is a key factor affecting the structural behaviour of the composite wall systems, and therefore, achieving maximum compressive strength in lightweight concrete while maintaining its lightweight properties is of significant importance. In this study a new type of optimum polystyrene lightweight concrete (OPLC) with high compressive strength is developed for infill material in composite CFS shear wall systems. To study the seismic behaviour of the OPLC-filled CFS shear wall systems, two full scale wall specimens are tested under cyclic loading condition. The effects of OPLC on load-bearing capacity, failure mode, ductility, energy dissipation capacity, and stiffness degradation of the walls are investigated. It is shown that the use of OPLC as infill in CFS shear walls can considerably improve their seismic performance by: (i) preventing the premature buckling of the stud members, and (ii) changing the dominant failure mode from brittle to ductile thanks to the bond-slip behaviour between OPLC and CFS studs. It is also shown that the design equations proposed by EC8 and ACI 318-14 standards overestimate the shear force capacity of OPLC-filled CFS shear wall systems by up to 80%. This shows it is necessary to propose methods with higher efficiency to predict the capacity of these systems for practical applications.

Failure Analysis and Accelerated Life Test of MoxW1-xSi2 Haters Fabricated by SHS process (SHS 공정으로 제조된 MoxW1-xSi2 발열체의 가속수명시험과 고장분석)

  • Lee, Dong-Won;Lee, Sang-Hun;Kim, Yong-Nam;Lee, Heesoo;Lee, Sung-Chul;Koo, Sang-Mo;Oh, Jong-Min
    • Journal of IKEEE
    • /
    • v.21 no.3
    • /
    • pp.252-255
    • /
    • 2017
  • $Mo_xW_{1-x}Si_2$ heaters were fabricated by self-propagating high-temperature synthesis (SHS) process and post sintering process. To validate the reliability of the $Mo_xW_{1-x}Si_2$ heaters, the accelerated life test (ALT) was conducted, and then lifetime to $Mo_xW_{1-x}Si_2$ heaters was estimated by using Minitab programs. Also, the failure analysis of $Mo_xW_{1-x}Si_2$ heaters after ALT was performed through electrical and structural properties. As the results, it was confirmed that the dominant failure mode of $Mo_xW_{1-x}Si_2$ heaters is the crack formation in heaters and the delamination of protective $SiO_2$ layers.

Effect of Chemical Composition of Nut Material on the Fracture Behavior in Nut Projection Welding of Hot-Stamped Steel Sheet (핫스탬핑강의 너트 프로젝션 용접시 너트 재질이 용접부 파단모드 변화에 미치는 영향)

  • Lim, Sung-Sang;Kim, Young-Tae;Chun, Eun-Joon;Nam, Ki-Sung;Park, Young-Wan;Kim, Jae-Wan;Lee, Sun-Young;Choi, Il-dong;Park, Yeong-Do
    • Journal of Welding and Joining
    • /
    • v.34 no.2
    • /
    • pp.1-10
    • /
    • 2016
  • The use of materials for modern lightweight auto-bodies is becoming more complex than hitherto assemblies. The high strength materials nowadays frequently used for more specific fields such as the front and rear sub frames, seat belts and seats are mounted to the assembled body structure using bolt joints. It is desirable to use nuts attached to the assembled sheets by projection welding to decrease the number of loose parts which improves the quality. In this study, nut projection welding was carried out between a nut of both boron steel and carbon steel and ultra-high strength hot-stamped steel sheets. Then, the joints were characterized by optical and scanning electron microscope. The mechanical properties of the joints were evaluated by microhardness measurements and pullout tests. An indigenously designed sample fixture set-up was used for the pull-out tests to induce a tensile load in the weld. The fractography analysis revealed the dominant interfacial fracture between boron steel nut weld which is related to the shrinkage cavity and small size fusion zone. A non-interfacial fracture was observed in carbon steel nut weld, the lower hardness of HAZ caused the initiation of failure and allowed the pull-out failure which have higher in tensile strengths and superior weldability. Hence, the fracture load and failure mode characteristics can be considered as an indication of the weldability of materials in nut projection welding.

Application of Event Tree Technique for Quantification of Nuclear Power Plant Safety (원자력발전소의 정량적인 안전 해석을 위한 사건수목 기법의 응용)

  • Kim, See-Darl;Jin, Young-Ho;Kim, Dong-Ha;Park, Soo-Yong;Park, Jong-Hwa
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.2
    • /
    • pp.126-135
    • /
    • 2000
  • Probabilistic Safety Assessment (PSA) is an engineering analysis method to identify possible contributors to the risk from a nuclear power plant and now it has become a standard tool in safety evaluation of nuclear power plants. PSA consists of three phases named as Level 1, 2 and 3. Level 2 PSA, mainly focused in this paper, uses a step-wise approach. At first, plant damage states (PDSs) are defined from the Level 1 PSA results and they are quantified. Containment event tree (CET) is then constructed considering the physico-chemical phenomena in the containment. The quantification of CET can be assisted by a decomposition event tree (DET). Finally, source terms are quantitatively characterized by the containment failure mode. As the main benefit of PSA is to provide insights into plant design, performance and environmental impacts, including the identification of the dominant risk contributors and the comparison of options for reducing risk, this technique is expected to be applied to the industrial safety area.

  • PDF

Effect of Lubricant Additives on the Surface Fatigue Performance of Gear Oils

  • Hong, Hyun-Soo;Huston, Michael E.;Stadnyk, Nicholas M.
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.136-143
    • /
    • 1995
  • The effect of additive chemistry on the serface fatigue of gears was investigated using the FZG gear tester and fluids based on an API GL-5 grade oil. Surface fatigue lives were determined as a function of load and additive chemistry. At 1.52 GPa, the removal of the primary extreme pressure additive (EP) from the fully formulated gear oil decreased the fatigue life of gears slightly (4%), however, the removal of the primary antiwear additive (AW) decreased the fatigue life of gears significantly (83%). At 1.86 GPa, the removal of the EP additive from the fully formulated gear oil decresed the gear fatigue life 27%, however, the removal of the primary AW additive decreased the fatigue life of gears significantly (75%). Micropitting was the dominant surface morphology in the dedendum of gears tested With two oils at load stage: one using the complete additive package, and a second where the EP additive has been removed. However, spalling is the primary failure mode of gears tested without an AW additive independent of whether an EP agent was present. Surface analysis of pinion gears showed the formation of a mixed phosphate/phosphite-oxide layer on the surface of gears tested with fluids containing an AW. Formation of this layer seems to be key to long fatigue life.

Service life prediction of rubber seal materials for immersion tunnel by accelerated thermal degradation tests (가속 열 노화시험을 이용한 침매터널용 고무 씰 소재의 사용수명 예측)

  • Park, Joon-Hyung;Park, Kwang-Hwa;Park, Hyeong-Geun;Kwon, Young-Il;Kim, Jong-Ho;Sung, Il-Kyung
    • Journal of Applied Reliability
    • /
    • v.9 no.4
    • /
    • pp.275-290
    • /
    • 2009
  • This paper considers accelerated thermal degradation tests which are performed for rubber seal materials used for undersea tunnels constructed by immersion method. Three types of rubber seals are tested; rubber expansion seal, omega seal, and shock absorber hose. Main ingredient of rubber expansion seal is EPDM(Ethylene Propylene Diene Monomer) and that of both omega seal and shock absorber hose is SBR(Styrene Butadiene Rubber). The accelerated stress is temperature and an Arrhenius model is introduced to describe the relationship between the lifetime and the stress. From the accelerated degradation tests, dominant failure mode of the rubber seals is found to be the loss of elongation. The lifetime distribution and the service life of the rubber seals at use condition are estimated from the test results. The acceleration factor for three types of rubber seals are also investigated.

  • PDF

Seismic behavior of steel frames with lightweight-low strength industrialized infill walls

  • Zahrai, Seyed Mehdi;Khalili, Behnam Gholipour;Mousavi, Seyed Amin
    • Earthquakes and Structures
    • /
    • v.9 no.6
    • /
    • pp.1273-1290
    • /
    • 2015
  • JK wall is a shear wall made of lightweight EPS mortar and reinforced with a 3-D galvanized steel mesh, called JK panel, and truss-like stiffeners, called JK stiffeners. Earlier studies have shown that low strength lightweight concrete has the potential to be used in structural elements. In this study, seismic contribution of the JK infill walls surrounded by steel frames is numerically investigated. Adopting a hybrid numerical model, behavior envelop of the wall is derived from the general purpose finite element software, Abaqus. Obtained backbone would be implemented in the professional analytical software, SAP2000, in which through calibrated hysteretic parameters, cyclic behavior of the JK infill can be simulated. Through comparison with earlier experimental results, it turned out that the proposed hybrid modeling can simulate monotonic and cyclic behavior of JK walls with good accuracy. JK infills have a panel-type configuration which their dominant failure mode would be ductile in flexure. Finally technical and economical advantages of the proposed JK infills are assessed for two representative multistory buildings. It is revealed that JK infills can reduce maximum inter-story drifts as well as residual drifts at the expense of minor increase in the developed base shear.

Study on Section Properties of Deckplates with Flat-Hat Stiffners (Flat-Hat 스티프너를 가진 데크플레이트의 단면 성능에 관한 연구)

  • Ju, Gi-Su;Park, Sung-Moo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.1 s.11
    • /
    • pp.77-86
    • /
    • 2004
  • It is the buckling of the compression portions of the deckplate that govern its behaviour under wet concrete construction loading. The size and position of intermediate stiffeners in the compression flanges of thin-plate steel decks exert a strong influence on the dominant buckling mode of the flange. Test sections composed of high-strength steel were brake pressed with a variety of Flat-hat intermediate stiffeners in the compression flange forming a progression from small to large stiffeners. The ABAQUS program to determine the effectiveness of intermediate stiffeners in controlling buckling modes is undertaken. A series of specimens are loaded with simple beam. Various buckling wave forms prior to ultimate failure through a plastic collapse mechanism. The experimentally determined buckling stresses are found to be comparable with studies performed using the ABAQUS program analysis and using each country code.

  • PDF