• Title/Summary/Keyword: domesticated gene

Search Result 25, Processing Time 0.023 seconds

Prospect and Situation of Quality Improvement in Oilseed rape (유채 품질 평가 현황과 전망)

  • 장영석
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47
    • /
    • pp.175-185
    • /
    • 2002
  • Rapeseed(Brassica napus L.) is an important oil crop as a vegetable oil, concentrated feed and industrial materials. The name "canola" was registered in 1979 by the Western Canadian Oilseed Crushers Association to describe "double-low" varieties. Double low indicates that the processed oil contains less than 2% erucic-acid and the meal less than 3mg/g of glucosinolates. Today annual worldwide production of rapeseed is approximately 35 million tons on 24 million hectares. China accounts for 33% of the world production and the European Economic Community for nearly 32%. Canola ranks 3rd in production among the world's oilseed crops following soybeans, sunflowers, peanuts and cottonseed. The recent advances in genomics and in gene function studies has allowed us to understand the detailed genetic basis of many complex traits, such as flowering time, height, and disease resistance. The manipulation of seed oil content via transgene insertion has been one of the earliest successful applications of modern biotechnology in agriculture. For example, the first transgenic crop with a modified seed composition to be approved for unrestricted commercial cultivation in the US was a lauric oil, rape-seed, grown in 1995. There were also some significant early successes, mostly notably the achievement of 40% to 60% lauric acid content in rapeseed oil, which normally accumulates little or no lauric acid. The name "$\textrm{Laurical}^{TM}$" was registered in 1995 by Calgene Inc. Nevertheless, attempts to achieve high levels of other novel fatty acids in seed oils have met with much less success and there have been several reports that the presence of novel fatty acids in transgenic plants can sometimes lead to the induction of catabolic pathways which break down the novel fatty acid, i.e. the plant recognizes the "strange" fatty acid and, far from tolerating it, may even actively eliminate it from the seed oil. It is likely that, in the future, transgenic oil crops and newly domesticated oil crops will both be developed in order to provide the increased amount and diversity of oils which will be required for both edible and industrial use. It is important that we recognize that both approaches have both positive and negative points. It will be a combination of these two strategies that is most likely to supply the increasing demands for plant oils in the 21st century and beyond.ant oils in the 21st century and beyond.

Extent of linkage disequilibrium and effective population size of Korean Yorkshire swine

  • Shin, Donghyun;Won, Kyeong-Hye;Kim, Sung-Hoon;Kim, Yong-Min
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.12
    • /
    • pp.1843-1851
    • /
    • 2018
  • Objective: We aimed to characterize linkage disequilibrium (LD) and effective population size ($N_e$) in a Korean Yorkshire population using genomic data from thousands of individuals. Methods: We genotyped 2,470 Yorkshire individuals from four major Grand-Grand-Parent farms in Korea using the Illumina PorcineSNP60 version2 BeadChip, which covers >61,565 single nucleotide polymorphisms (SNPs) located across all chromosomes and mitochondria. We estimated the expected LD and inferred current $N_e$ as well as ancestral $N_e$. Results: We identified 61,565 SNP from autosomes, mitochondria, and sex chromosomes and characterized the LD of the Yorkshire population, which was relatively high between closely linked markers (>0.55 at 50 kb) and declined with increasing genetic distance. The current $N_e$ of this Korean Yorkshire population was 122.87 (106.90; 138.84), while the historical $N_e$ of Yorkshire pigs suggests that the ancestor $N_e$ has decreased by 99.6% over the last 10,000 generations. Conclusion: To maintain genetic diversity of a domesticated animal population, we must carefully consider appropriate breed management methods to avoid inbreeding. Although attenuated selection can affect short-term genetic gain, it is essential for maintaining the long-term genetic variability of the Korean Yorkshire population. Continuous and long-term monitoring would also be needed to maintain the pig population to avoid an unintended reduction of $N_e$. The best way to preserve a sustainable population is to maintain a sufficient $N_e$.

Maternal Origins of the Jeju Native Pig Inferred from PCR-RFLP Haplotypes and Molecular Phylogeny for Mitochondrial DNA CYTB Gene Sequences (미토콘드리아 DNA CYTB 유전자 서열에 대한 분자 계통과 PCR-RFLP 반수체형에 근거한 제주재래돼지의 모계 기원)

  • Han, Sang-Hyun;Ko, Moon-Suck;Jeong, Ha-Yeon;Lee, Sung-Soo;Oh, Hong-Shik;Cho, In-Cheol
    • Journal of Life Science
    • /
    • v.21 no.3
    • /
    • pp.341-348
    • /
    • 2011
  • In an effort to gain greater understanding of the maternal lineages of the Jeju native pig (JNP), we analyzed the mitochondrial DNA (mtDNA) CYTB gene and compared it with those of other pig breeds. PCR-RFLP analysis was conducted with six pig breeds including JNP, and then the RFLP patterns allowed for the separation of the pig breeds into two distinct haplotypes (mtCYTB1 and mtCYTB2). The JNP CYTB sequences were detected in both the European and Asian breed clusters on the phylogenetic tree. The J2 group was sorted with the indigenous cluster of Asian pig lineages and was related closely to Chinese native pig breeds, but a second group, J1, was sorted with the European pig lineages and appeared to be related to Spanish Iberian native pigs, rather than to Asian breeds. These results indicate that the JNP currently raised on Jeju Island have two major maternal origins estimated in Asian and European pigs. We concluded that the JNP that share a common lineage with indigenous Asian pigs were domesticated in the distant past, originating from pigs that were already being raised elsewhere at that time, and that the European pig breeds introduced in the twentieth century have also contributed to the formation of this pig population.

Phylogenetic Relationships and Characterization of Korean Native Silkworm Strains Based on RAPDs and Isozyme Analysis, Bombyx mori (동위효소 및 RAPD분석에 의한 한국재래종 누에계통의 계통학적 특성)

  • 이재만;노시갑
    • Journal of Sericultural and Entomological Science
    • /
    • v.43 no.2
    • /
    • pp.59-66
    • /
    • 2001
  • This study was conducted to elucidate phylogenetic relationships and genetic characterization of silkworms that might be recognized as the Korean native strains. Genetic characterization in isozymes and the proteins of larval hemolymph of 17 silkworms were observed by acrylamide gel eletrophoresis, on 12 genes; Bph, Bes, les, Amy-hc, Ict-A, -B, -D,-E,-H, Pfl, Pst, Lp. Gene frequencies in each locus were compared other geographic strains. Korean native strains were remarkably different from others considered as the genetic characterization of Korean native strains. Phylogenetic relationships in Korean native strains were analysed using RAPD-PCR markers. A total of 40 primers were used and 346 bands of amplified DNA were generated from geographic strains. Genetic similarity based on the RAPD bands was used to construct phylogenetic dendrogram based on analysis of bard sharing data of amplified markers. Genetic similarity ranged from 0.595 to 0.860. In the genetic relationship based on dendrogram, they were classified into Bombyx mori group (including 16 domesticated silkworm strains) and B. mandarina group. The Bombyx mori group was separated into three sub-groups at the genetic similarity of 0.6930, including Korean, Japanese and Chinese groups. According to this result, the Korean native variety can be considered as a clearly different variety from other geographic strains. It may be concluded that the Korean native strains are also one of original geographic variety such as Japanese, Chinese, etc.

  • PDF

Quantitative Expression Analysis of Functional Genes in Four Dog Breeds (개의 네 품종에서 기능 유전자들에 대한 정량적 발현 분석)

  • Gim, Jeong-An;Kim, Sang-Hoon;Lee, Hee-Eun;Jeong, Hoim;Nam, Gyu-Hwi;Kim, Min Kyu;Huh, Jae-Won;Choi, Bong-Hwan;Kim, Heui-Soo
    • Journal of Life Science
    • /
    • v.25 no.8
    • /
    • pp.861-869
    • /
    • 2015
  • One of the domesticated species; the dog has been selectively bred for various aims by human. The dog has many breeds, which are artificially selected for specific behaviors and morphologies. Dogs contribute their life to human as working dogs for guide, rescue, detection or etc. Working dogs requires good personality, such as gentleness, robustness and patience for performing their special duty. Many studies have concentrated on finding genetic marker for selecting the high-quality working dog. In this study, we confirmed quantitative expression patterns of eight genes (ABAT; 4-Aminobutyrate Aminotransferase, PLCB1; Phospholipase C, Beta 1, SLC10A4; Solute Carrier Family 10, Member 4, WNT1; Wingless-Type MMTV Integration Site Family, Member 1, BARX2; BarH-Like Homeobox 2, NEUROD6; Neuronal Differentiation 6, SEPT9; Septin 9 and TBR1; T-Box, Brain, 1) among brains tissues from four dog breeds (Beagle, Sapsaree, Shepherd and Jindo), because these genes were expressed and have functions in brain mostly. Specially, BARX2, SEPT9, SLC10A4, TBR1 and WNT1 genes were highly expressed in Beagle and Jindo, and Sapsaree and German Shepherd were vice versa. The biological significance of total genes was estimated by database for annotation, visualization and integrated discovery (DAVID) to determine a different gene ontology (GO) class. In these analyses, we suppose to these eight genes could provide influential information for brain development, and intelligence of organisms. Taken together, these results could provide clues to discover biomarker related to functional traits in brain, and beneficial for selecting superior working dogs.