Browse > Article
http://dx.doi.org/10.5352/JLS.2011.21.3.341

Maternal Origins of the Jeju Native Pig Inferred from PCR-RFLP Haplotypes and Molecular Phylogeny for Mitochondrial DNA CYTB Gene Sequences  

Han, Sang-Hyun (Subtropical Animal Experiment Station, National Institute of Animal Science, RDA)
Ko, Moon-Suck (Subtropical Animal Experiment Station, National Institute of Animal Science, RDA)
Jeong, Ha-Yeon (Subtropical Animal Experiment Station, National Institute of Animal Science, RDA)
Lee, Sung-Soo (National Institute of Animal Science, RDA)
Oh, Hong-Shik (Department of Science Education, Jeju National University)
Cho, In-Cheol (Subtropical Animal Experiment Station, National Institute of Animal Science, RDA)
Publication Information
Journal of Life Science / v.21, no.3, 2011 , pp. 341-348 More about this Journal
Abstract
In an effort to gain greater understanding of the maternal lineages of the Jeju native pig (JNP), we analyzed the mitochondrial DNA (mtDNA) CYTB gene and compared it with those of other pig breeds. PCR-RFLP analysis was conducted with six pig breeds including JNP, and then the RFLP patterns allowed for the separation of the pig breeds into two distinct haplotypes (mtCYTB1 and mtCYTB2). The JNP CYTB sequences were detected in both the European and Asian breed clusters on the phylogenetic tree. The J2 group was sorted with the indigenous cluster of Asian pig lineages and was related closely to Chinese native pig breeds, but a second group, J1, was sorted with the European pig lineages and appeared to be related to Spanish Iberian native pigs, rather than to Asian breeds. These results indicate that the JNP currently raised on Jeju Island have two major maternal origins estimated in Asian and European pigs. We concluded that the JNP that share a common lineage with indigenous Asian pigs were domesticated in the distant past, originating from pigs that were already being raised elsewhere at that time, and that the European pig breeds introduced in the twentieth century have also contributed to the formation of this pig population.
Keywords
Maternal lineage; origin; mtDNA; haplotype; Jeju native pig;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Kim, K. S., J. S. Yeo, and J. W. Kim. 2002. Assessment of genetic diversity of Korean native pig (Sus scrofa) using AFLP markers. Genes Genet. Syst. 77, 361-368.   DOI
2 Kim, T. H., K. S. Kim, B. H. Choi, D. H. Yoon, G. W. Jang, K. T. Lee, H. Y. Chung, H. Y. Lee, H. S. Park, and J. W. Lee. 2005. Genetic structure of pig breeds from Korea and China using microsatellite loci analysis. J. Anim. Sci. 83, 2255-2263.
3 Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparable studies of nucleotide sequences. J. Mol. Evol. 16, 111-120.   DOI
4 Larson, G., K. Dobney, U. Albarella, M. Fang, E. Matisoo-Smith, J. Robins, S. Lowden, H. Finlayson, T. Brand, E. Willerslev, P. Rowley-Conwy, L. Andersson, and A. Cooper. 2005. Worldwide phylogeography of wild boar reveals multiple centers of pig domestication. Science 307, 1618-1621.   DOI   ScienceOn
5 Lin, C. S., Y. L. Sun, C. Y. Liu, P. C. Yang, L. C. Chang, I. C. Cheng, S. J. Mao, and M. C. Huang. 1999. Complete nucleotide sequence of pig (Sus scrofa) mitochondrial genome and dating evolutionary divergence within Artiodactyla. Gene 236, 107-114.   DOI
6 Okumura, N., N. Ishiguro, M. Nakano, H. Katsuya, A. Matsui, and M. Sahara. 1996. Geographic population structure and sequence divergence in the mitochondrial DNA control region of the Japanese wild boar (Sus scrofa leucomystax), with reference to those of domestic pigs. Biochem. Genet. 34, 179-189.   DOI
7 Shin, T., C. Lee, S. Kim, K. Yang, C. Ko, B. Lee, S. Ahn, S. Jin, and E. Ko. 1992. An anatomy study of animal bones excavated in the Kwakji archaeological site in Cheju Island. Go-Moon-Wha 40, 31-42.
8 Cho, I. C., S. H. Han, M. Fang, S. S. Lee, M. S. Ko, H. Lee, H. T. Lim, C. K. Yoo, J. H. Lee, and J. T. Jeon. 2009. The robust phylogeny of Korean wild boar (Sus scrofa coreanus) using partial D-loop sequence of mtDNA. Mol. Cells 28, 423-430.   과학기술학회마을   DOI
9 Fang, M. and L. Andersson. 2006. Mitochondrial diversity in European and Chinese pigs is consistent with population expansions that occurred prior to domestication. Proc. Roy. Soc. B-Biol. Sci. 273, 1803-1810.   DOI
10 Shin, T., K. Yang, and S. Kim. 1993. An osteological finding of equine bones excavated from Kwakji archaeological site in Cheju-Do. Cheju Univ. J. 37, 85-90.
11 Shin, T. 2001. An osteological study of animal bones excavated from Jeju Jongdali shell-mount. Korean J. Vet. Res. 41, 275-279.
12 Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package) ver. 3.572, Computer program distributed by the author, Dept. of Genetics, University of Washington, Seattle, WA.
13 Giles, R. E., H. Blanc, H. M. Cann, and D. C. Wallace. 1980. Maternal inheritance of human mitochondrial DNA. Proc. Natl. Acad. Sci. USA. 77, 6715-6719.   DOI
14 Giuffra, E., J. M. H. Kijas, V. Amarger, O. Carlborg, J. T. Jeon, and L. Andersson. 2000. The origin of the domestic pig: independent domestication and subsequent introgression. Genetics 154, 1785-1791.
15 Gongora, J., P. Fleming, P. B. Spencer, R. Mason, O. Garkavenko, J. N. Meyer, C. Droegemueller, J. H. Lee, and C. Moran. 2004. Phylogenetic relationships of Australian and New Zealand feral pigs assessed by mitochondrial control region sequence and nuclear GPIP genotype. Mol. Phylogenet. Evol. 33, 339-348.   DOI
16 Jones, G. F. 1998. Genetic aspects of domestication, common breeds and their origins. pp. 17-50, In Ruvinsky, A. and M. F. Rothschild (eds.), The genetics of the pig. CAB International, Oxon, UK.
17 Kijas, J. M. H., R. Wales, A. Tornsten, P. Chardon, M. Moller, and L. Andersson. 1998. Melanocortin receptor 1(MC1R) mutations and coat color in pigs. Genetics 150, 1177-1185.
18 Kim, J. H., S. H. Han, M. C. Kang, J. H. Oh, Y. H. Jung, G. O. Kim, and M. Y. Oh. 2006. Ancient pigs on Jeju Island, Korea: molecular identification and phylogenetic relationship with extant native pigs. Korean J. Genet. 28, 385-393.
19 Thompson, J. D., D. G. Higgins, and T. I. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position- specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673-4680.   DOI
20 Shin, T., T. Jin, and C. Lee. 1996. Archaeological study of animal bones excavated from Cheju Kimnyungri cave site. Korean J. Vet. Res. 36, 757-761.
21 Watanabe, T., Y. Hayashi, N. Ogasawara, and T. Tomita. 1985. Polymorphism of mitochondrial DNA in pigs based on restriction endonuclease cleavage patterns. Biochem. Genet. 23, 105-113.   DOI
22 Wilson, A. C., L. Cann, S. M. Carr, M. George, and U. B. Gyllensten. 1985. Mitochondrial DNA and two perspectives on evolutionary genetics. Biol. J. Linn. Soc. 26, 375-400.   DOI
23 Wu, G. S., Y. G. Yao, K. X. Qu, Z. L. Ding, H. Li, M. G. Palanichamy, Z. Y. Duan, N. Li, Y. S. Chen, and Y. P. Zhang. 2007. Population phylogenomic analysis of mitochondrial DNA in wild boars and domestic pigs revealed multiple domestication events in East Asia. Genome Biol. 8, R245.   DOI
24 Yang, J., J. Wang, J. Kijas, B. Liu, H. Han, M. Yu, H. Yang, S. Zhao, and K. Li. 2003. Genetic diversity present within the near-complete mtDNA genome of 17 breeds of indigenous Chinese pigs. J. Hered. 94, 381-385.   DOI
25 Brown, W. M., M. George, and A. C. Wilson. 1979. Rapid evolution of animal mitocondrial DNA. Proc. Natl. Acad. Sci. USA 76, 1967-1971.   DOI
26 Kim, K. I., J. H. Lee, K. Li, Y. P. Zhang, S. S. Lee, J. Gongora, and C. Moran. 2002. Phylogenetic relationships of Asian and European pig breeds determinated by mitochondrial DNA D-loop sequence polymorphism. Anim. Genet. 33, 19-25.   DOI
27 Kim, K. S. and C. B. Choi. 2002. Genetic structure of Korean native pig using microsatellite markers. Korean J. Genet. 24, 1-7.   과학기술학회마을
28 Alves, E., C. Ovilo, M. C. Rodriguez, and L. Silio. 2003. Mitochondrial DNA sequence variation and phylogenetic relationships among Iberian pigs and other domestic and wild pig populations. Anim. Genet. 34, 319-324.   DOI