• Title/Summary/Keyword: domestic earthquake

Search Result 208, Processing Time 0.029 seconds

Current Status on Seismic Design/Evaluation of Metropolitan Rapid Transit System (도시철도 구조물의 내진설계 및 평가 현황조사)

  • Kim, Jong-Min;Kim, Jin-Ho;Lim, Nam-Hyoung;Kang, Young-Jong
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.220-223
    • /
    • 2008
  • Many structural engineers believed that RC underground structures like subway system might not be seriously damaged during earthquakes, until the Great Hanshin earthquake(a.k.a Kobe earthquake). But there is only one domestic seismic code of rapid transit system that established by Ministry of Construction & Transportation in 2005. Therefore, to investigate of current status on seismic design and evaluation method of rapid transit system is essential to estimate seismic performance of subway structural systems. In this study, comparing domestic codes and seismic evaluation methods with foreign system is performed.

  • PDF

Characteristics of Spectrum using Observed Ground Motion from the Yongwol and the Kyoungju Earthquakes(II) (영월 및 경주지진 파형의 주파수 분석(II))

  • 김준경
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.57-60
    • /
    • 1999
  • Amplification factor spectrum using the observed strong ground motions database in the Korean Peninsula has been obtained and compared with Standard Rpectrum which wa suggested by United States Nuclear Regulatory Committee. The observed ground motions from the Yongwol and the Kyoungju Earthquakes respectively which are supposed to represent domestic seismotectonic characteristics such as seismic source attenuation of the propagation meium and site specific effect are used for the analysis of amplification factor spectrum,. The database are slightly different from the those of the second study. Amplification factors have been calculated by comparing the observed peak ground motions with results from responses to the observed horizontal na vertical ground motions. The comparison have shown that the amplification factors resultant from this study exceeds those of Standard Response Spectrum The results suggest that the characteristics of seismic strong ground motion which are supposed to represent the domestic seismotectonic characteristics differs from those of Standard Response Spectrum especially at higher frequencies. The results from the 2nd study are similar to those of 1st analysis.

  • PDF

Characterization of Domestic Earthquake Events for the Safety Assessment of the Geological Disposal System (심지층 처분시스템의 안전성평가를 위한 국내 지진 발생 특성 평가)

  • Kim, Jung-Woo;Cho, Dong-Keun;Ko, Nak-Youl;Jeong, Jongtae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.2
    • /
    • pp.87-98
    • /
    • 2015
  • Safety assessments of geological radioactive waste disposal systems, need to consider the abnormal scenario in which a system is impacted by external events in addition to a reference scenario. In this study, the characterization and prediction of an earthquake as an external event which will impact disposal systems were conducted probabilistically and statistically for the safety assessment. The domestic earthquake data were analyzed, and the prediction methodologies of the earthquake were suggested with a computational example. From the results, the earthquake occurrence rates in Korea ranged from 0.4 /yr to 36.2 /yr depending on the data set and the completeness magnitude. From a conservative point of view, the earthquake occurrence rate in the disposal system was suggested as 5.4×10-4 /yr considering the area of the disposal system. At that time, the completeness magnitude of an earthquake was 2.3. This study will be followed by an appraisal of impacts associated with external events on the geological disposal system, and it will contribute to improvements in reliability of the safety assessment.

Response Spectra of 2017 Pohang Earthquake and Comparison with Korean Standard Design Spectra (2017년 포항지진 스펙트럼과 한국표준설계스펙트럼의 비교)

  • Heo, Tae Min;Kim, Jung Han;Lee, Jin Ho;Kim, Jae Kwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.129-137
    • /
    • 2018
  • On November 15, 2017, Pohang earthquake occurred. Its local magnitude was announced to be $M_L=5.4$ by Korea Meteorological Administration (KMA). Ground motion data recorded at KMA stations were obtained from their data bases. From the data, horizontal and vertical response spectra, and V/H ratio were calculated. The horizontal spectra were defined as GMRotI50 spectra. From the statistical analysis of the GMRotI50 spectra, a mean plus one standard deviation spectrum in lognormal distribution is obtained. Regression analysis is performed on this curve to determine the shape of spectrum including transition periods. Applying the same procedure, the shape and transition periods of vertical spectrum were obtained. These results were compared with theKorean standard design spectra, which were developed from domestic and overseas intra-plate earthquake records, and Gyeongju earthquake response spectra. The response spectra of Pohang earthquake were found to be almost identical with the newly proposed design spectra. Even the V/H ratios showed good agreement. These results confirmed that the method adopted when developing the standard design spectra were valid and the developed design spectra were reliable.

Leak Before Break Evaluation of Surge Line by Considering CPE under Beyond Design Basis Earthquake (설계초과지진시 CPE를 고려한 밀림관 파단전누설 평가)

  • Seung Hyun Kim;Youn Jung Kim;Han-geol Lee;Sun Yeh Kang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.18 no.1
    • /
    • pp.19-25
    • /
    • 2022
  • Nuclear Power Plants (NPP) should be designed to have sufficient safety margins and to ensure seismic safety against earthquake that may occur during the plant life time. After the 9.12 Gyeongju earthquake accident, the structural integrity of nuclear power plants due to the beyond design basis earthquake is one of key safety issues. Accordingly, it is necessary to conduct structural integrity evaluations for domestic NPPs under beyond design basis earthquake. In this study, the Level 3 LBB (Leak Before Break) evaluation was performed by considering the beyond design basis earthquake for the surge line of a OPR1000 plant of which design basis earthquake was set to be 0.2g. The beyond design basis earthquake corresponding to peak ground acceleration 0.4g at the maximum stress point of the surge line was considered. It was confirmed that the moment behaviors of the hot leg and pressurized surge nozzle were lower than the maximum allowable loading in moment-rotation curve. It was also confirmed that the LBB margin could be secured by comparing the LBB margin through the Level 2 method. It was judged that the margin was secured by reducing the load generated through the compliance of the pipe.

Earthquake Resistance Design for a Typical Bridge Substructure (일반교량 하부구조의 내진설계)

  • Kook, Seung-Kyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.3
    • /
    • pp.283-288
    • /
    • 2011
  • For the earthquake resistance design designer should provide that structural yielding process is principally designed with the ductile failure mechanism. In order to get the ductile failure mechanism for typical bridges, pier columns yielding should occur before that of connections. However domestic bridge design with unnecessary stiff substructure leads to unnecessary seismic loads and makes it difficult to get the ductile failure mechanism. Such a problem arises from the situation that earthquake resistant design is not carried out in the preliminary design step. In this study a typical bridge is selected as an analysis bridge and design strengths for connections and pier columns are determined in the preliminary design step by carrying out earthquake resistant design. It is shown through this procedure that it is possible to get the ductile failure mechanism with structural members determined by other design.

Investigation on Effective Peak Ground Accelerations Based on the Gyeongju Earthquake Records (경주지진 관측자료에 기반한 유효최대지반가속도 분석)

  • Shin, Dong Hyeon;Hong, Suk-Jae;Kim, Hyung-Joon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.7_spc
    • /
    • pp.425-434
    • /
    • 2016
  • This study investigates important parameters used to determine an effective peak ground acceleration (EPGA) based on the characteristics of response spectra of historical earthquakes occurred at Korean peninsula. EPGAs are very important since they are implemented in the Korean Building Code for the seismic design of new structures. Recently, the Gyeongju earthquakes with the largest magnitude in earthquakes measured at Korea took place and resulted in non-structural and structural damage, which their EPGAs should need to be evaluated. This paper first describes the basic concepts on EPGAs and the EPGAs of the Gyeongju earthquakes are then evaluated and compared according to epicentral distances, site classes and directions of seismic waves. The EPGAs are dependant on normalizing factors and ranges of period on response spectrum constructed with the Gyeongju earthquake records. Using the normalizing factors and the ranges of period determined based on the characteristics of domestic response spectra, this paper draw a conclusion that the EPGAs are estimated to be about 30 % of the measured peak ground accelerations (PGA).

Displacement Ductility Based Seismic Performance Evaluation of Circular RC Bridge Piers (변위연성도 기반 원형철근콘크리트 교각의 내진성능 평가)

  • Park, Chang-Kyu;Lee, Dae-Hyoung;Yun, Sang-Chul;Chung, Young-Soo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.276-283
    • /
    • 2006
  • Korea is considered to be immune from the earthquake hazard because it is located far away from the active fault. However, recent earthquake caused a loss of lives and economical loss worldwide. Hence there has been raised an importance of the earthquake resistant design for various infrastructures. In this research, the seismic design and evaluation criterion for RC bridge pier were proposed from the experimental results of 82 circular RC bridge piers tested in domestic and aboard. New seismic criterion was introduced the limited ductile design provision suitable to Korean peninsula, which would be classified as a low or moderate seismic region. In addition, further important topic for the seismic safety of RC bridge piers in Korea is the seismic performance enhancement of RC bridge piers, which were designed and constructed before the 1992 seismic design provision. Therefore, the proposed seismic performance evaluation criterion could be very useful to judge seismic retrofit need or not according to the residual seismic performance of the RC bridge piers. Also, it could reduce an uncertainty for the safety of the infrastructure under earthquakes.

  • PDF

Seismic Performance Evaluation of School Building Reinforced by Circular-Opening Steel Shear Wall System (원형개구부가 있는 강판 전단벽 시스템을 적용한 학교 건축물의 내진성능평가)

  • Lee, Yu-Hyeon;Lee, Swoo-Heon;Lee, Hee-Du;Shin, Kyung-Jae
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.1
    • /
    • pp.19-26
    • /
    • 2018
  • After the Gyeongju earthquake, school buildings were designated as earthquake shelters. However, the ratio of designed for seismic of domestic school buildings is only 23.2% in Korea, and it is necessary to secure the seismic safety of those. Therefore, in this paper, a target building was selected before the seismic design criteria was established and the seismic performance of the building was evaluated. After the evaluation, reinforcement of the building was carried out using seismic retrofit systems which was previously tested. For this purpose, the evaluation was carried out using OpenSees program and the reliability of the seismic retrofit systems was also verified. In this way, we can more precisely reproduce the response of the building in case of actual earthquake and predict damage of the earthquake in the future.