• Title/Summary/Keyword: dome shape

Search Result 153, Processing Time 0.03 seconds

Modeling of the triangle optimum shape in the surface of an Aluminum dome structure (알루미늄 돔 구조물에서 표면의 삼각형 최적 형상 모델링)

  • 이성철;조종두
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.647-650
    • /
    • 1997
  • A complete dome structure is based on a basic dome modeling, and the basic dome modeling affects safety of the dome structure. In other to save the manufacture expenses, an optimum shape modeling of a dome structure is necessary work of before manufacture of the dome. In this study, modeling of the triangle optimum shape in the surface of an aluminum dome is more focused to optimize shape of the dome and save manufacture expenses. After being made the systematic procedure of the basic modeling, the programming work of the procedure is performed. The program is made by C language, and the trust of the program is proved by comparison between output data of the program and basic modeling in PATRAN.

  • PDF

The Prediction of Structural Behavior for Composite Pressure Vessel with Changed Dome Shape (돔 형상 변화에 따른 복합재 압력용기의 구조 거동 예측)

  • Hwang, Tae-Kyung;Park, Jae-Byum;Kim, Hyung-Kun;Doh, Young-Dae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.288-292
    • /
    • 2008
  • Dome shape design method of filament wound (FW) composite pressure vessel, which can create various dome shape with fixed boss opening, was suggested. And, the performance indices (PV/W) for composite pressure vessel with same boss opening but different dome shape were investigated by finite element analysis (FEA) and hydro-test. The FEA showed good agreement with test results for burst pressure. Generally, as the dome shape of pressure vessel was changed to flat dome, the inner volume is increased and the burst pressure is decreased. In the case of above ${\rho}_o$=0.54, the performance index showed decreased value due to the low burst pressure. However, at ${\rho}_o$=0.35, the dome shape change brings not significant reduction of burst pressure and performance index.

  • PDF

Seismic Response Analysis of Dome-Shaped Large Spatial Structures According to TMD Installation (TMD 설치에 따른 돔 형상 대공간 구조물의 지진응답분석)

  • Ku, Seung-Yeon;Yoo, Sang-Ho;Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.4
    • /
    • pp.27-34
    • /
    • 2023
  • In this study, the seismic response characteristics of the three analysis model with or without TMD were investigated to find out the effective dome shape. The three analysis models are rib type, lattice type and geodesic type dome structure composed of space frame. The maximum vertical and horizontal displacements were evaluated at 1/4 point of the span by applying the resonance harmonic load and historical earthquake loads (El Centro, Kobe, Northridge earthquakes). The study of the effective TMD installation position for the dome structure shows that seismic response control was effective when eight TMDs were installed in all types of analysis model. The investigation of the efficiency of TMD according to dome shape presents that lattice dome and geodesic dome show excellent control performance, while rib dome shows different control performance depending on the historical seismic loads. Therefore, lattice and geodesic types are desirable for seismic response reduction using TMD compared to rib type.

A Study on the Shape Modeling and Structural Stability of an Icosahedron-typed Modular Dome (정20면체 모듈러 돔의 형상모델링 및 구조안정성에 관한 연구)

  • Shon, Su-Deok;Woo, Hyo-Jun;Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.2
    • /
    • pp.51-59
    • /
    • 2015
  • In this study, a shape design and an analysis considering structural stability were investigated to develop an icosahedron-based hemispherical modular dome. To design this modular dome, a program that can perform icosahedron shape modeling, modularization of joint connection members, and the analysis of structural stability was developed. Furthermore, based on the adopted numerical model, the eigen buckling mode, unstable behavior characteristics according to load vector, and the critical buckling load of the modular dome under uniformly distributed load and concentrated load were analyzed, and the resistance capacities of the structure according to different load vectors were compared. The analysis results for the modular dome suggest that the developed program can perform joint modeling for shape design as well as modular member design, and adequately expressed the nonlinear behaviors of structured according to load conditions. The critical buckling load results also correctly reflected the characteristics of the load conditions. The uniformly distributed load was more advantageous to the structural stability than concentrated load.

Dome Shape Design and Performance Evaluation of Composite Pressure Vessel (복합재 압력용기의 돔 형상 설계 및 성능 평가)

  • Hwang, Tae-Kyung;Park, Jae-Beom;Kim, Hyoung-Geun;Doh, Young-Dae;Moon, Soon-Il
    • Composites Research
    • /
    • v.20 no.4
    • /
    • pp.31-41
    • /
    • 2007
  • Dome shape design methods of Filament Winding (FW) composite pressure vessel, which can suggest various dome contour according to the external loading conditions, were investigated analytically and numerically. The performance indices(PV/W) of the pressure vessels with same cylinder radius and boss opening but different dome shape were evaluated by finite element analysis under the internal pressure loading condition. The analysis results showed that as the dome shape becomes flat, the performance index decreases significantly due to the reduced burst pressure. Especially, for the case of the high value of the parameter ro, the ratio between the radii of the cylinder part and the boss opening, the flat dome is disadvantageous in the aspect of the weight reduction, and additional reinforcing dome design technique should be required to increase the burst pressure. For example, above ro=0.54 condition, the dome shape change according to the loading condition could cause the low burst pressure and increase of composite weight in dome region and is not recommendable except for the special case that maximum inner volume or sufficient space between skirt and dome is the primary design objective. However, at ro=0.35, the dome shape change brings not so significant differences in the performance of FW vessel.

Shape Design of Pressure Vessel Dome (압력용기의 도움 형상설계)

  • 이영신;조원만
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.3
    • /
    • pp.1057-1062
    • /
    • 1991
  • 본 연구에서는 형상을 미소하게 변화시켜 좌굴을 방지할 수 있는 최적 도움형 상을 설계하였고 타원형, 토리-구형도움의 가장 얕은 형태의 최적도움형상도 설계하였] 으며, 실제 적용예를 수치로 제시하였다. 또한 수압(hydrostatic pressure)을 받는 수조(reservoir)의 도움형상에 대해서도 직경 및 길이 변화에 따른 형상설계 결과를 제시하였다.

A Study on the Stabilizing Process and Structural Characteristics of Cable-Dome Structure (케이블돔 구조물의 안정화 이행과정 및 구조적 거동특성에 관한 연구)

  • 한상을;이경수;이주선;황보석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.260-267
    • /
    • 1999
  • In this paper, We propose the initial shape finding and dynamic analysis of cable dome structure are presented. Cable dome that is consist of three component such as cable, strut and fabric membrane have complex structural characteristics. Main structural system of cable dome is cable-strut tensegric system, and fabric membrane element Is conceived as cladding roof material. One of the important problem of cable dome is shape finding of those subjected to cable and membrane forces, which stabilize the structures. And the other is structural response from external load effect such as snow and wind When cable dome are subjected to dynamic load such as wind load each structural component has many important problem because of their special structural characteristics. One problem is that geometrical nonlinearity should be considered in the dynamic analysis because large deformation is occurred from their flexible characteristic. The other problem is that wrinkling occurs occasionally because cable and membrane elements can not transmit compressive forces. So this paper describe the physical structural response of cable dome structure.

  • PDF

Reinforcement Effects of Buckling Member for Single-layer Latticed Dome (단층래티스 돔의 좌굴부재 보강효과에 관한 연구)

  • Jung, Hwan-Mok;Yoon, Seok-Ho;Lee, Dong-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.4
    • /
    • pp.45-52
    • /
    • 2016
  • The single layer latticed domes have attracted many designers and researchers's attention all of the world, because these structures as spatial structure are of great advantage in not only mechanical rationality but also function, fabrication, construction and economic aspect. But single layer latticed domes are apt to occur the unstable phenomena that are called "buckling" because of the lack of strength of members, instability of structural shape, etc. In the case of latticed dome, there are several types of buckling mode such as overall buckling, local buckling, and member buckling according to the shape of dome, section type of member, the size of member, junction's condition of member and so on. There are many methods to increase the buckling strength of the single layer latticed dome, that is, with the change of geometrical shape of dome, the reinforcement of buckled member, etc. Therefore, the purpose of this study is to verify the reinforcement effect of buckled member when designers reinforce the buckled member to increase the buckling strength of single layer latticed dome with 3-way grid.

Comparison of Brassiere Pattern according to breast shape on China Adult Females (중국 성인여성의 유방유형에 따른 브래지어 패턴 비교)

  • Cha, Su-Joung;Sohn, Hee-Soon
    • Journal of Fashion Business
    • /
    • v.15 no.1
    • /
    • pp.63-79
    • /
    • 2011
  • This study examines the relationship between breast shape and brassiere construction through the comparative analysis of brassiere pattern on the breast shape. This researcher drew the brassiere pattern of developing a pre-study for Chinese female adults according to average size based on the four breast shapes. And then we measures brassiere pattern size and comparatively analyzes breast between size and shape. Comparative analysis results of brassiere patterns are verified differences of size and shape on the breast shape. Above all an angle of cup dart showed remarkable differences on the breast shape. An angle of cup dart isn't proportioned to breast size. An angle of cup dart for cone shape is bigger than dome shape. Because cone shape breast is protruded center part but dome shape breast have a shape of smooth curve like a half globe. So an angle of a cone shape breast cup dart is determined bigger than dome shape breast. For increasing the uplift effect of brassiere, brassiere pattern is different on the breast shape. And a brassiere pattern need different drawing methods about the angle of cup dart, breast inner side diameter, slope and so on. This study has an important significance that it established a mechanical relationship of breast shape and brassiere pattern.

Optimal Design of the Fuel Storage Vessel of CNG Automobile by Considering Structural Efficiency (구조 효율을 고려한 CNG 자동차 연료저장용기의 최적설계)

  • Kim, Ho-Yoon;Bae, Won-Byong;Jang, Young-Jun;Kim, Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.6
    • /
    • pp.465-473
    • /
    • 2008
  • Type II compressed natural gas(CNG) storage vessels for automobiles have been acknowledged for their excellence and have recently become established in local regions. Their supply is not only to automakers in Korea such as Hyundai Motors but they are being increasingly exported. Although the available products have undergone safety evaluations and are certified by an authorized institution they are still short of the optimal design that is possible for such storage vessels. This research investigates the shape and thickness of the dome with the aim of optimizing the type II CNG storage vessels by using a finite element analysis technique. CNG storage vessels can be largely divided into 3 parts namely, the hear part, the cylinder part and the dome part. The head part is designed by means of a hot spinning process and this method is safer than that used in the design of the dome part even though its shape is similar. The thickness of the liners and reinforcing materials was optimized based on the requirements of the cylinder and dome parts. In addition, the shape of the dome, which is most suitable for Type II CNG storage vessels, is proposed by a process of review and analysis of various existing shape, and then conducting a structural stability evaluation to ensure the optimal design plan.