• Title/Summary/Keyword: domain-wall motion

Search Result 101, Processing Time 0.024 seconds

Effect of Ceramic-Electrode Interface on the Electrical Properties of Multilayer Ceramic Actuators (적층형 세라믹 액츄에이터의 세라믹-전극간 계면이 전기적 특성에 미치는 영향에 대한 연구)

  • 하문수;정순종;송재성;이재신
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.10
    • /
    • pp.896-901
    • /
    • 2002
  • The polarization and strain behavior of multilayer ceramic actuators fabricated by tape casting using a PNN-PZT ceramics were investigated in association with electrode size and internal layer number. Spontaneous polarization and strain decreased with increasing electrode size. In addition, the increase of internal layer number brought reduced spontaneous polarization and increased the field-induced strain. Because the actuators structure is designed to stack ceramic layer and electrode layer alternatively, the ceramic-electrode interfaces may act as a resistance to motion of domain wall. To analyze the effect of ceramic-electrode interface, the diffraction intensity ratio of (002) to (200) planes was calculated from X-ray diffraction patterns of samples subjected to a voltage of 200 V. The diffraction intensity ratio of (002) to (200) planes was decreased with increasing electrode size and internal layer number. The diffraction intensity ratio and straining behavior analyses indicate that the Polarization and strain were affected by the amount of 90°domain decreasing with increasing electrode size and internal layer number. Consequently, the change of polarization and displacement with respect to electrode size and layer number is likely to be caused by readiness of the domain wall movement around the interface.

Current-Driven Domain-Wall Depinning in Pt/CoFe/Pt Nanowires with Perpendicular Magnetic Anisotropy

  • Kim, Kab-Jin;Lee, Jae-Chul;Choe, Sug-Bong
    • Journal of Magnetics
    • /
    • v.14 no.3
    • /
    • pp.101-103
    • /
    • 2009
  • The spin transfer torque efficiency was determined experimentally by observing the current-driven domainwall depinning of Pt/CoFe/Pt nanowires with perpendicular magnetic anisotropy. The depinning time was exponentially proportional to the applied magnetic field, and was well explained by the Neel-Brown formula. The depinning time and threshold magnetic field were varied considerably by injecting current into the nanowire. The spin transfer torque efficiency was estimated to be $(7.2{\pm}0.9){\times}10^{-15}Tm^2$/A from the linear dependence of the threshold current density with respect to the applied magnetic field.

CHARACTERIZATION OF MAGNETIZATION BEHAVIOR IN Co/Pd PERPENDICULAR ANISOTROPIC MULTILAYERS

  • Oh, Hoon-Sang;Joo, Seung-Ki
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.655-658
    • /
    • 1995
  • Magnetization behavior of sputter-deposited Co/Pd multilayers were characterized, and it has been found that even when the multilayers are sputtered at low pressure (10 mTorr), the coercivity of the multilayers can be increased to large extent without noticeable change of saturation magnetization by increasing the deposition pressure of Pd underlayer. It turned out that the surface topology of Pd underlayer gets rough as deposition pressure increases, which consequently affects the magnetization reversal mode of Co/Pd multilayers from domain wall motion to magnetic spin rotation. The enhancement of coercivity is attributed to the domain wall pinning effect which is comected with the surface roughness of Pd underlayer on which Co/Pd multilayers grow.

  • PDF

CFD simulation of vortex-induced vibration of free-standing hybrid riser

  • Cao, Yi;Chen, Hamn-Ching
    • Ocean Systems Engineering
    • /
    • v.7 no.3
    • /
    • pp.195-223
    • /
    • 2017
  • This paper presents 3D numerical simulations of a Free Standing Hybrid Riser under Vortex Induced Vibration, with prescribed motion on the top to replace the motion of the buoyancy can. The model is calculated using a fully implicit discretization scheme. The flow field around the riser is computed by solving the Navier-Stokes equations numerically. The fluid domain is discretized using the overset grid approach. Grid points in near-wall regions of riser are of high resolution, while far field flow is in relatively coarse grid. Fluid-structure interaction is accomplished by communication between fluid solver and riser motion solver. Simulation is based on previous experimental data. Two cases are studied with different current speeds, where the motion of the buoyancy can is approximated to a 'banana' shape. A fully three-dimensional CFD approach for VIV simulation for a top side moving Riser has been presented. This paper also presents a simulation of a riser connected to a platform under harmonic regular waves.

Magnetization Reversal and Magnetic Switching Volume in Electrodeposited CoPt Magnetic Films with Different Thickness (전기도금법으로 제작한 두께가 다른 CoPt 자성막의 자화역전과 자기역전 부피)

  • Kim, Hyeon-Soo;Jeong, Soon-Young;Lee, Chang-Hyeong;Suh, Su-Jeong
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.6
    • /
    • pp.193-197
    • /
    • 2011
  • The thickness dependence of the magnetic switching volumes in electrodeposited CoPt films was investigated from the magnetization reversal and the magnetic interaction behavior. As the sample thickness is increased, the field difference between the wall pinning field ($H_{DW}$) and the nucleation field ($H_N$) as well as the absolute value of ${\Delta}$area are increased. Therefore, the decrement tendency of the switching diameter with increasing sample thickness can be well explained by the domain wall motion controlled by the domain wall pinning and the strength of dipolar interaction.

Effects of Ag Seed Layer on the Magnetic Properties and the Microstructural Evolution of SmCo/Cr Thin Films (Ag 씨앗층이 SmCo/Cr 박막의 자기적 특성과 미세구조에 미치는 영향)

  • 이성래;고광식;김영근
    • Journal of the Korean Magnetics Society
    • /
    • v.11 no.2
    • /
    • pp.63-71
    • /
    • 2001
  • The effects of an Ag seed layer on the magnetic properties and the microstructural evolution of SmCo/Cr thin films deposited on glass substrates were investigated. Coercivity of the films is 2.0 kOe when the thickness of Ag seed layer was 1nm thick, but it increased to 2.7 kOe when the Ag seed layer thickness is 3 nm. The increase of coercivity for film with 3 nm-thick Ag is due to roughness of Cr and grain size of Cr by the Ag microbumps. Ar partial pressure influenced on the formation of Ag microbumps, for example, they were formed at 5 mTorr when Ag thickness was 1 nm. The mechanism of magnetization reversal of the SmCo films changed from domain wall motion to domain rotation as the Ag inserted. This was thought to be due to inhibition of domain wall motion by the reduction of Cr grain size and the increase of roughness.

  • PDF

Passive 3D motion optical data in shaking table tests of a SRG-reinforced masonry wall

  • De Canio, Gerardo;de Felice, Gianmarco;De Santis, Stefano;Giocoli, Alessandro;Mongelli, Marialuisa;Paolacci, Fabrizio;Roselli, Ivan
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.53-71
    • /
    • 2016
  • Unconventional computer vision and image processing techniques offer significant advantages for experimental applications to shaking table testing, as they allow the overcoming of most typical problems of traditional sensors, such as encumbrance, limitations in the number of devices, range restrictions and risk of damage of the instruments in case of specimen failure. In this study, a 3D motion optical system was applied to analyze shake table tests carried out, up to failure, on a natural-scale masonry structure retrofitted with steel reinforced grout (SRG). The system makes use of wireless passive spherical retro-reflecting markers positioned on several points of the specimen, whose spatial displacements are recorded by near-infrared digital cameras. Analyses in the time domain allowed the monitoring of the deformations of the wall and of crack development through a displacement data processing (DDP) procedure implemented ad hoc. Fundamental frequencies and modal shapes were calculated in the frequency domain through an integrated methodology of experimental/operational modal analysis (EMA/OMA) techniques with 3D finite element analysis (FEA). Meaningful information on the structural response (e.g., displacements, damage development, and dynamic properties) were obtained, profitably integrating the results from conventional measurements. Furthermore, the comparison between 3D motion system and traditional instruments (i.e., displacement transducers and accelerometers) permitted a mutual validation of both experimental data and measurement methods.