• Title/Summary/Keyword: dolostone

Search Result 12, Processing Time 0.031 seconds

Occurrence and Mineralogical Characteristics of Asbestos in Dolostone at Ungdo, Seosan (서산 웅도 백운암 내 석면 산출 및 광물학적 특성 규명)

  • Kim, Seon-Ok;Lee, Minhee;Jung, Hyunjung;Shin, Wonji
    • Economic and Environmental Geology
    • /
    • v.47 no.5
    • /
    • pp.489-496
    • /
    • 2014
  • The occurrence and mineralogical characteristics of asbestos in dolostone at Ungdo, Seosan were investigated by analyses of PLM, XRD, and SEM/EDS. Representative outcrops of dolostone at Ungdo were examined and four dolostone samples were collected according the occurrence type to identify the shape of asbestos in dolostone samples. The host rock of dolostone had been produced from the hydrothermal alteration and/or thermal metamorphism of which main source was assumed as the acidic granite. Tremolites were observed near the cracks or fractures of the dolostone as tamping or gob types. From the mineralogical analyses, main minerals of dolostone were dolomite with calcite, quartz, talc, amphibole, and pyroxene. From SEM/EDS analyses, tremolite-actinolite asbestoses were observed in dolostone and their shapes were prismatic and fibrous (less than $1{\mu}m$ in width). Non-asbestos prismatic forms were also found and they would transfer to asbestos particles resulting from the cleavage and fracture of the prismatic particles. Overall results suggest that asbestoses in Ungdo dolosotnes were mainly tremolite-actinolite and they were originated from the hydrothermal alteration of Ca-Mg rich dolostone.

KATSTIC SINKHOLE SEDIMENTS OF DOLOSTONE IN THE UPPER MIDWEST'S DRIFTLESS AREA, USA

  • Oh, Jong-woo
    • Journal of the Speleological Society of Korea
    • /
    • v.34 no.35
    • /
    • pp.78-104
    • /
    • 1993
  • Analysis of one sinkhole, the Dodgeville sinkhole, developed in Ordovician dolostones in the Driftless Area of Wisconsin in the Upper Midwest'd Driftless Area reveals homogenous clayey sediment fills reflecting a range of dissolutional processes during the Quaternary or Pre-Quaternary. Granulometric analysis, graphical moments statistics, carbonate minerals, ana sand grain lithology were used to differentiate sinkhole sediment sources and modes of accumulation. Sediments in the dolostone sinkholes developed by dissolution. Sediments contain two major types of sediments : residual redish clay( autogenic sediments) and aeolian silt (allogenic sediments). The massive clay is generated from the weathered dolostone bedrocks as a in situ materials. The loessial silt is mostly derived from transportation of the surrounding surface materials, with some evidences of penetrated deposition. Unlike the collapsed sandstone sinkholes (Oh et al., 1993), dolostone sinkholes reveal homogenous, autogenic clay materials, and a geochemical composition indicative of in situ autogenic karstification. Dolostone sinkhole si1ts (26.9%) and sands (34.9%) are derived from weathered Plattevi1le-Galena dolostones, and contain high carbonate(37.5%), chert (57.2%) and lead ore (3%). Graphical moments statistics for sorting, skewness, and kurtosis indicate that sand grains from dolostones were derived entirely from local bedrock by in situ dissolution. Upper sinkhole sediments are pedagogically very young as carbonate is unleashed. Materials of the sinkhole sediment are definitely inherited from internal dolostones by dissolution and weathering, because not only a granulomatric comparison of dolostone and sandstone sediments demonstrates that they have heterogeneous paticle size distributions, but also 1ithologic analyses displays they differ completely.

  • PDF

Rhodochrostone - A New Sedimentary Rock from the Janggun Mine, Korea (장미암(薔薇岩)-장군광산산(將軍鑛山産) 신종(新種) 퇴적암(堆積岩))

  • Kim, Soo Jin
    • Economic and Environmental Geology
    • /
    • v.8 no.2
    • /
    • pp.63-71
    • /
    • 1975
  • A new rock name, rhodochrostone is proposed for the sedimentary rock from the Janggun Mine, Korea, which consist mainly of rhodochrosite. Systematic classification of rhodochrositic rocks was made for the rocks of rhodochrosite-calcite-quartz and rhodochrosite-quartz-clay, respectively. According to the writer's new scheme of classification, the manganese carbonate beds of the Janggun Mine, Korea consist mainly of rhodochrostone and siliceous rhodochrostone, with minor clayey siliceous rhodochrostone. The underlying and overlying carbonate rocks consist of high-manganiferous dolostone, moderate-manganiferous dolostone and low-manganiferous dolostone. The same scheme of classification is applicable to the similar manganiferous rocks in other countries. Mineralogical, petrological and chemical studies were made.

  • PDF

Asbestiform Tremolite Formed by Chert-Dolomite Reaction and Its Morphological Characteristics (처트-백운석 반응에 의한 석면상 투각섬석의 생성과 형태적 특성)

  • Jeong, Gi Young;Choi, Jin Beom
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.111-118
    • /
    • 2013
  • Diagenetic black chert nodules occur in the Paleozoic dolostone in Susan, Jecheon, Korea. They reacted with dolomite to form alteration rim around the nodules during the contact metamorphism probably related to the intrusion of biotite granite. In the earlier stage of alteration, talc and calcite replaced both the chert and dolomite, which were subsequently replaced by tremolite. Significant mass of tremolite occurs along the horizon enriched with chert nodules. Scanning electron microscopy and optical microscopy of the tremolite specimens revealed the elongated morphology of diverse aspect ratios coexisting in several mm scale. Non-asbestiform tremolite columns were also common as well as asbestiform fibrous bundles. Quantitative estimation of asbestos should be more cautious for naturally occurring materials because all the tremolite particles in the outcrop are not asbestiform. The occurrence of asbestiform tremolite in the Susan area indicates that a combination of chert-bearing dolostone, heat source, and aqueous fluids is one of the geological environments for the formation of asbestiform tremolite.

New Occurrence of Haengmae Formation in Taebaeksan Basin (태백산분지 내 새로운 행매층 분포 확인)

  • Song, Yungoo;Park, Chaewon;Kim, Namsoo;Choi, Sung-Ja;Chwae, Ueechan;Kwon, Sanghoon;Jang, Yirang
    • Economic and Environmental Geology
    • /
    • v.54 no.3
    • /
    • pp.365-372
    • /
    • 2021
  • Pebble-bearing clastic carbonate rock which has been found in and around the Jeongseon and Okgye through the field survey was studied in petrological and mineralogical characteristics. We define the clastic carbonate rocks as 'Dolomite-pebble bearing fine sand-sized dolostone, or grainstone', which are characterized by the existence of dolomite single grains and Mg-phengite, and by the subsequent formation of secondary calcite cements. These attributes correspond well with those of the typical Haengmae Formation from Haengmae-dong, Mitan-myeon, Jeongseon-gun, thus the carbonate rocks in the Jeongseon and Okgye areas must belong to the Haengmae Formation. The result suggests that the Haengmae Formation is an independent unit among the Paleozoic lithostratigraphic units in Taebaek basin and lies in the upper part of Jeongseon and Sukbyungsan Formations under the Hongjeom Formation of Pyeongan Supergroup.

Occurrence and Mineralogical Characteristics of Dolomite Ores from South Korea (국내 백운석 광석의 산상과 광물학적 특성)

  • Hwang, Jinyeon;Choi, Jin Beom;Jeong, Gi Young;Oh, Jiho;Choi, Younghun;Lee, Jinhyun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.87-99
    • /
    • 2013
  • The occurrence, mineralogical characteristics, and origin of the dolomite ores were investigated from major dolomite mines in South Korea. Mineralogical and textural properties of the ores and associated minerals were analyzed using X-ray diffraction, thin section petrography, and scanning electron microscopy. Dolomite ores were light to dark gray in color and mainly composed of dolomite in varying particle size with minor amounts of calcite, quartz and micas. Calcite, quartz, illite, feldspar, kaolin minerals, and chlorite occurred in local veins, dikes and alteration zones. Sepiolite and wollastonite occurred in the altered part of some mine. Asbestos minerals such as chrysotile and tremolite, however, were not identified in the present study. Reddish brown to yellow clay materials were mainly composed of illite, occasionally associated with kaolin minerals and smectite. These clay minerals might be a product of the local hydrothermal alteration related to the dyke intrusion and subsequent weathering. As well indicated in the previous studies, mineral composition, texture, and occurrence of the dolostone beds suggest their formation through the diagenesis of carbonate sediments deposited in the shallow sea during the Precambrian to Paleozoic period.

Siderite and Siderostone from the Sangdong Mine, Yeongweol-gun, Korea (강원도(江原道) 상동광산(上東鑛山)에서 발견(發見)된 능철석(菱鐵石) 및 능철석암(菱鐵石岩))

  • Kim, Soo Jin;Chang, Se-Won
    • Journal of the Mineralogical Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.73-80
    • /
    • 1989
  • The sedimentary siderite rock or siderostone has been firstly found from the upper part of the Cambrian Myobong Slate in the Sangdong Tungsten Mine area. It occurs as layers between slate and calc-silicate rock (originally siliceous ankerite rock and ferroan dolostone) or within calc-silicate rock. Some parts of the siderostone bed, however, are considerably skarnized to iron-rich skarns, leaving only small-scaled relics. Siderostone consists mainly of siderite and quartz with minor amount of bertioerine and fluorite or apatite and is commonly microcrystalling granular in texture. Stratification is well developed in some siderstone. The siderostone and its skarnized rocks occasionally contain scheelite grains. Siderite also occurs in sandstone and slate. Mineralogy and textures of the siderostone suggest that it might be formed in the shallow marine basin where enough organic matter was present to maintain a low Eh and iron was supplied, and that siderite might be formed largely by diagenesis from iron-rich berthierine mud.

  • PDF

The Skarnification and Fe-Mo Mineralization at Lower Part of Western Shinyemi Ore Body in Taeback Area (태백지역 신예미 서부광체 하부의 스카른화작용 및 철-몰리브덴 광화작용)

  • Seo, Ji-Eun;Kim, Chang-Seong;Park, Jung-Woo;Yoo, In-Kol;Kim, Nam-Hyuck;Choi, Seon-Gyu
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.1 s.51
    • /
    • pp.35-46
    • /
    • 2007
  • Shinyemi skarn deposits occur as Fe-Mo skarn type and Pb-Zn-Cu hydrothermal replacement type along the contact between Cretaceous Shinyemi granitoids and Cambro-Ordovician mixed limestone and dolostone sequence of the Choseon Supergroup. In the lower part of Western Shinyemi ore body two stages of skarn formation have been observed: the early, stage I (magnesian) skarn with Fe mineralization and the late, stage II(calcic) skarn with Mo mineralization. The stage I skarn spatially is overprinted by stage II skarn. The stage I skarn is predominantly composed of olivine, magnetite and diopside whereas, the stage II skarn is dominated by hedenbergite and garnet. The skarnification process occurred in two stages, both prograde and retrograde for stage I and stage II skarns. In stage I, the prograde skarns, mainly composed of anhydrous silicate minerals, were formed at relatively higher temperatures (about $400\;to\;550^{\circ}C$) under low $CO_{2}$ fugacity ($X_{CO2}<0.1$) conditions. On the other hand, the retrograde skarns that consisted of hydrous minerals were formed at lower temperatures (about $300\;to\;400^{\circ}C$).

Material Characteristics and Nondestructive Deterioration Assessment for the Celestial Chart Stone, Korea (천상열차분야지도 각석의 재질특성과 비파괴 훼손도 평가)

  • Yoo, Ji Hyun;Lee, Myeong Seong;Choie, Myoungju;Ahn, Yu Bin;Kim, Yuri
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.207-222
    • /
    • 2018
  • Celestial Chart Stones (original and reproduction) in the National Palace Museum are representative scientific cultural heritage of Korea. Material analysis and nondestructive deterioration assessment were conducted for long-term preservation of these stones. Material analysis revealed that the original was composed of slate and the reproduction was made of dolostone. The original consists of quartz, mica, dolomite minerals, while the reproduction was made up of dolomite, calcite and forsterite. Major deterioration factors of the original stone were cracks and breakouts. In case of the reproduction, scratches and artificial materials were mainly observed. The green and black surface contaminants present at the sides and back of the two celestial chart stones were interpreted as resin-based paint materials. The physical property evaluation using ultrasonic velocity showed a low velocity in the upper left side of the original, while the front right side of the reproduction showed a weak property. Meanwhile, the To-Tc method using ultrasonic velocity was applied to major cracks that impede stability of the original. As a result, it has been calculated that the beginning and the center of the crack are the deepest.

Geology, Mineralization, and Age of the Pocheon Fe(-Cu) Skarn Deposit, Korea (한국 포천 철(-동) 스카른 광상의 지질, 광화작용 및 생성연대)

  • Kim, Chang Seong;Go, Ji Su;Choi, Seon-Gyu;Kim, Sang-Tae
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.317-333
    • /
    • 2014
  • The Pocheon iron (-copper) deposit, located at the northwestern part of the Precambrian Gyeonggi massif in South Korea, genetically remains controversial. Previous researchers advocated a metamorphosed (-exhalative) sedimentary origin for iron enrichment. In this study, we present strong evidences for skarnification and Fe mineralization, spatially associated with the Myeongseongsan granite. The Pocheon deposit is composed of diverse carbonate rocks such as dolostone and limestone which are partially overprinted by various hydrothermal skarns such as sodic-calcic, calcic and magnesian skarn. Iron (-copper) mineralization occurs mainly in the sodic-calcic skarn zone, locally superimposed by copper mineralization during retrograde stage of skarn. Age data determined on phlogopites from retrograde skarn stage by Ar-Ar and K-Ar methods range from $110.3{\pm}1.0Ma$ to $108.3{\pm}2.8Ma$, showing that skarn iron mineralization in the Pocheon is closely related to the shallow-depth Myeongseongsan granite (ca. 112 Ma). Carbon-oxygen isotopic depletions of carbonates in marbles, diverse skarns, and veins can be explained by decarbonation and interaction with an infiltrating hydrothermal fluids in open system ($XCO_2=0.1$). The results of sulfur isotope analyses indicate that both of sulfide (chalcopyrite-pyrite composite) and anhydrites in skarn have very high sulfur isotope values, suggesting the $^{34}S$ enrichment of the Pocheon sulfide and sulfate sulfur was derived from sulfate in the carbonate protolith. Shear zones with fractures in the Pocheon area channeled the saline, high $fO_2$ hydrothermal fluids, resulting in locally developed intense skarn alteration at temperature range of about $500^{\circ}$ to $400^{\circ}C$.