• 제목/요약/키워드: document similarities

검색결과 45건 처리시간 0.019초

문헌간 유사도를 이용한 SVM 분류기의 문헌분류성능 향상에 관한 연구 (Improving the Performance of SVM Text Categorization with Inter-document Similarities)

  • 이재윤
    • 정보관리학회지
    • /
    • 제22권3호
    • /
    • pp.261-287
    • /
    • 2005
  • 이 논문의 목적은 SVM(지지벡터기계) 분류기의 성능을 문헌간 유사도를 이용해서 향상시키는 것이다. SVM은 효과적인 기계학습 시스템으로서 최고 수준의 문헌자동분류 기술로 인정받고 있다. 이 연구에서는 문헌 벡터 자질 표현에 기반한 SVM 문헌자동분류를 제안하였다. 제안한 방식은 분류 자질로 색인어 대신 문헌 벡터를, 자질 값으로 가중치 대신 벡터유사도를 사용한다. 제안한 방식에 대한 실험 결과, SVM 분류기의 성능을 향상시킬 수 있었다. 실행 효율 향상을 위해서 문헌 벡터 자질 선정 방안과 범주 센트로이드 벡터를 사용하는 방안을 제안하였다. 실험 결과 소규모의 벡터 자질 집합만으로도 색인어 자질을 사용하는 기존 방식보다 나은 성능을 얻을 수 있었다.

분포유사도를 이용한 문헌클러스터링의 성능향상에 대한 연구 (Improving the Performance of Document Clustering with Distributional Similarities)

  • 이재윤
    • 정보관리학회지
    • /
    • 제24권4호
    • /
    • pp.267-283
    • /
    • 2007
  • 이 연구에서는 분포 유사도를 문헌 클러스터링에 적용하여 전통적인 코사인 유사도 공식을 대체할 수 있는 가능성을 모색해보았다. 대표적인 분포 유사도인 KL 다이버전스 공식을 변형한 Jansen-Shannon 다이버전스, 대칭적 스큐 다이버전스, 최소스큐 다이버전스의 세 가지 공식을 문헌 벡터에 적용하는 방안을 고안하였다. 분포 유사도를 적용한 문헌 클러스터링 성능을 검증하기 위해서 세 실험 집단을 대상으로 두 가지 실험을 준비하여 실행하였다. 첫 번째 문헌클러스터링실험에서는 최소스큐다이버전스가 코사인 유사도 뿐만 아니라 다른 다이버전스공식의 성능도 확연히 앞서는 뛰어난 성능을 보였다. 두번째 실험에서는 피어슨 상관계수를 이용하여1차 유사도 행렬로부터2차 분포 유사도를 산출하여 문헌 클러스터링을 수행하였다. 실험결과는 2차 분포 유사도가 전반적으로더 좋은 문헌 클러스터링성능을 보이는 것으로 나타났다. 문헌클러스터링에서 처리 시간과 분류 성능을 함께 고려한다면 이 연구에서 제안한 최소 스큐 다이버전스 공식을 사용하고, 분류 성능만 고려할 경우에는 2차 분포 유사도 방식을 사용하는 것이 바람직하다고 판단된다.

공통 Phrase의 관계 그래프와 Suffix Tree 문서 모델을 이용한 문서 군집화 기법 (Document Clustering with Relational Graph Of Common Phrase and Suffix Tree Document Model)

  • 조윤호;이상근
    • 한국콘텐츠학회논문지
    • /
    • 제9권2호
    • /
    • pp.142-151
    • /
    • 2009
  • 기존의 문서 군집화 기법 NSTC은 문서 군집화 과정 내에서 TF-IDF를 이용하여 문서간 유사도를 측정한다. 본 논문에서는 TF-IDF가 아닌, 공통 Phrase의 관계 그래프를 이용한 새로운 문서간 유사도 측정을 제안한다. 이 방법은 문서 집합 내의 공통 Phrase들의 관계를 나타낸 관계 그래프를 통해 공통 Phrase의 가중치를 부여하는 방법을 제시한다. 또한 실험을 통해 NSTC와 비교하여 본 논문에서 제안한 문서간 유사도 측정 기법이 문서 군집화에 더욱 효과적임을 보였다.

Combining Distributed Word Representation and Document Distance for Short Text Document Clustering

  • Kongwudhikunakorn, Supavit;Waiyamai, Kitsana
    • Journal of Information Processing Systems
    • /
    • 제16권2호
    • /
    • pp.277-300
    • /
    • 2020
  • This paper presents a method for clustering short text documents, such as news headlines, social media statuses, or instant messages. Due to the characteristics of these documents, which are usually short and sparse, an appropriate technique is required to discover hidden knowledge. The objective of this paper is to identify the combination of document representation, document distance, and document clustering that yields the best clustering quality. Document representations are expanded by external knowledge sources represented by a Distributed Representation. To cluster documents, a K-means partitioning-based clustering technique is applied, where the similarities of documents are measured by word mover's distance. To validate the effectiveness of the proposed method, experiments were conducted to compare the clustering quality against several leading methods. The proposed method produced clusters of documents that resulted in higher precision, recall, F1-score, and adjusted Rand index for both real-world and standard data sets. Furthermore, manual inspection of the clustering results was conducted to observe the efficacy of the proposed method. The topics of each document cluster are undoubtedly reflected by members in the cluster.

문장 수반 관계를 고려한 문서 요약 (Document Summarization Considering Entailment Relation between Sentences)

  • 권영대;김누리;이지형
    • 정보과학회 논문지
    • /
    • 제44권2호
    • /
    • pp.179-185
    • /
    • 2017
  • 문서의 요약은 요약문 내의 문장들끼리 서로 연관성 있게 이어져야 하고 하나의 짜임새 있는 글이 되어야 한다. 본 논문에서는 위의 목적을 달성하기 위해 문장 간의 유사도와 수반 관계(Entailment)를 고려하여 문서 내에서 연관성이 크고 의미, 개념적인 연결성이 높은 문장들을 추출할 수 있도록 하였다. 본 논문에서는 Recurrent Neural Network 기반의 문장 관계 추론 모델과 그래프 기반의 랭킹(Graph-based ranking) 알고리즘을 혼합하여 단일 문서 추출요약 작업에 적용한 새로운 알고리즘인 TextRank-NLI를 제안한다. 새로운 알고리즘의 성능을 평가하기 위해 기존의 문서요약 알고리즘인 TextRank와 동일한 데이터 셋을 사용하여 성능을 비교 분석하였으며 기존의 알고리즘보다 약 2.3% 더 나은 성능을 보이는 것을 확인하였다.

Automatic Single Document Text Summarization Using Key Concepts in Documents

  • Sarkar, Kamal
    • Journal of Information Processing Systems
    • /
    • 제9권4호
    • /
    • pp.602-620
    • /
    • 2013
  • Many previous research studies on extractive text summarization consider a subset of words in a document as keywords and use a sentence ranking function that ranks sentences based on their similarities with the list of extracted keywords. But the use of key concepts in automatic text summarization task has received less attention in literature on summarization. The proposed work uses key concepts identified from a document for creating a summary of the document. We view single-word or multi-word keyphrases of a document as the important concepts that a document elaborates on. Our work is based on the hypothesis that an extract is an elaboration of the important concepts to some permissible extent and it is controlled by the given summary length restriction. In other words, our method of text summarization chooses a subset of sentences from a document that maximizes the important concepts in the final summary. To allow diverse information in the summary, for each important concept, we select one sentence that is the best possible elaboration of the concept. Accordingly, the most important concept will contribute first to the summary, then to the second best concept, and so on. To prove the effectiveness of our proposed summarization method, we have compared it to some state-of-the art summarization systems and the results show that the proposed method outperforms the existing systems to which it is compared.

계층적 문서 클러스터링을 이용한 실세계 질의 메일의 자동 분류 (Automatic Categorization of Real World FAQs Using Hierarchical Document Clustering)

  • 류중원;조성배
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 춘계학술대회 학술발표 논문집
    • /
    • pp.187-190
    • /
    • 2001
  • Due to the recent proliferation of the internet, it is broadly granted that the necessity of the automatic document categorization has been on the rise. Since it is a heavy time-consuming work and takes too much manpower to process and classify manually, we need a system that categorizes them automatically as their contents. In this paper, we propose the automatic E-mail response system that is based on 2 hierarchical document clustering methods. One is to get the final result from the classifier trained seperatly within each class, after clustering the whole documents into 3 groups so that the first classifier categorize the input documents as the corresponding group. The other method is that the system classifies the most distinct classes first as their similarity, successively. Neural networks have been adopted as classifiers, we have used dendrograms to show the hierarchical aspect of similarities between classes. The comparison among the performances of hierarchical and non-hierarchical classifiers tells us clustering methods have provided the classification efficiency.

  • PDF

Fast, Flexible Text Search Using Genomic Short-Read Mapping Model

  • Kim, Sung-Hwan;Cho, Hwan-Gue
    • ETRI Journal
    • /
    • 제38권3호
    • /
    • pp.518-528
    • /
    • 2016
  • The searching of an extensive document database for documents that are locally similar to a given query document, and the subsequent detection of similar regions between such documents, is considered as an essential task in the fields of information retrieval and data management. In this paper, we present a framework for such a task. The proposed framework employs the method of short-read mapping, which is used in bioinformatics to reveal similarities between genomic sequences. In this paper, documents are considered biological objects; consequently, edit operations between locally similar documents are viewed as an evolutionary process. Accordingly, we are able to apply the method of evolution tracing in the detection of similar regions between documents. In addition, we propose heuristic methods to address issues associated with the different stages of the proposed framework, for example, a frequency-based fragment ordering method and a locality-aware interval aggregation method. Extensive experiments covering various scenarios related to the search of an extensive document database for documents that are locally similar to a given query document are considered, and the results indicate that the proposed framework outperforms existing methods.

확장된 Relief-F 알고리즘을 이용한 소규모 크기 문서의 자동분류 (Document Classification of Small Size Documents Using Extended Relief-F Algorithm)

  • 박흠
    • 정보처리학회논문지B
    • /
    • 제16B권3호
    • /
    • pp.233-238
    • /
    • 2009
  • 자질 수가 적은 소규모 크기 문서들의 자동분류는 좋은 성능을 얻기 어렵다. 그 이유는 문서집단 전체의 자질 수는 크지만 단위 문서 내 자질 수가 상대적으로 너무 적기 때문에 문서간 유사도가 너무 낮아 우수한 분류 알고리즘을 적용해도 좋은 성능을 얻지 못한다. 특히 웹 디렉토리 문서들의 자동분류에서나, 디스크 복구 작업에서 유사도 평가와 자동분류로 연결되지 않은 섹터를 연결하는 작업에서와 같은 소규모 크기 문서의 자동분류에서는 좋은 성능을 얻지 못한다. 따라서 본 논문에서는 소규모 크기 문서의 자동분류에서의 문제점을 해결하기 위해 분류 사전작업으로, 예제기반 자질 필터링 방법 Relief-F알고리즘을 소규모 문서 내 자질 필터링에 적합한 ERelief-F 알고리즘을 제시한다. 또 비교 실험을 위해, 기존의 자질 필터링 방법 중 Odds Ratio와 정보이득, 또 Relief-F 알고리즘을 함께 실험하여 분류결과를 비교하였다. 그 결과, ERelief-F 알고리즘을 사용했을 때의 결과가 정보이득과 Odds Ratio, Relief-F보다 월등히 우수한 성능을 보였고 부적절한 자질도 많이 줄일 수 있었다.

마코프 논리 기반의 시맨틱 문서 검색 (Semantic Document-Retrieval Based on Markov Logic)

  • 황규백;봉성용;구현서;백은옥
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권6호
    • /
    • pp.663-667
    • /
    • 2010
  • 본 논문은 질의 문서와 의미가 유사한 문서를 검색하는 문제를 다룬다. 이 문제에 대한 기본적인 접근법은 각 문서를 bag-of-words 형태로 표현한 후, 코사인 유사도 등의 거리 기준에 기반하여 유사 문서를 판별하는 것이다. 그러나, 이처럼 문서에 출현하는 단어에만 의존하는 검색 방법은 의미적 유사성을 제대로 반영하기 어렵다는 단점을 가진다. 본 논문에서는 이러한 문제를 극복하기 위해 데이터 기반의 감독 학습(supervised learning) 기법과 관련 온톨로지 정보를 마코프 논리(Markov logic)에 기반하여 결합한다. 구체적으로, 단어들 사이에 존재하는 관계를 표현한 온톨로지와 유사도가 태깅된 문서 데이터에서 마코프 논리 망(Markov logic network)을 학습하며, 학습된 마코프 논리 망과 문서 데이터 및 새로 주어진 질의 문서에 대한 추론을 통해 질의 문서와 의미적으로 유사한 문서를 검색하는 기법을 제안한다. 제안하는 접근법은 서울시의 민원서비스 홈페이지에서 수집된 실제 민원 데이터에 적용되었으며, 적용 결과, 단순한 문서 간 거리에 기반한 유사 문서 검색 기법에 비해 월등히 높은 정확도를 보였다.