본 연구는 공공기관이 소장한 이미지데이터의 검색 및 열람 등의 활용성을 높이기 위한 전문검색서비스 구현 시 필수적인 문서인식시스템의 고도화를 목표로 한다. 주요한 연구방향은 공공기관이 소장하고 있는 데이터를 사전에 분석하여 문서이미지 전처리 및 문서구조분석 기술을 개발하고, 문서인식 과정에서 활용하기 위한 이미지내용DB, 문자모델DB, 용어DB로 구성되는 특화된 지식베이스를 구축하는 것이다. 또한, 지식베이스 관리도구를 개발하여 향후 다양한 형태의 문서이미지로의 확장을 가능하게 한다. 최근 본 연구는 국가기록원에서 소장하고 있는 이미지데이터에 적합한 문서구조분석 라이브러리와 특화된 지식베이스를 결합한 문서인식 프로토타입 시스템 개발을 완료했다. 향후 본 연구의 결과는 방대한 소장자료의 검색 및 활용을 극대화할 전문검색시스템 연계를 위한 성능평가 및 테스트베드 구축에 활용될 것이다.
본 논문은 문서 영상을 대상으로 표, 그림, 글자 등의 각 구성요소들을 자동으로 분류하기 위한 새로운 텍스쳐 기반의 영상 분할 및 분류 방법을 제안한다. 제안한 방법은 문서 영상 분할 단계와 문서 영상 내 구성요소 분류 단계로 이루어진다. 먼저 영상 분할을 수행한 후, 분할된 영역을 대상으로 문서 영상의 구성 요소들을 분류하는데, 이때 각 구성 요소는 서로 다른 텍스쳐를 가지고 있는 영역이라는 특징을 이용한다. 분할된 영역들을 분류하기 위한 텍스쳐 특징을 추출하기 위해 다양한 텍스쳐 분석에 광범위하게 사용되는 2차원 가보필터를 이용한다. 제안한 방법은 구성 요소와 사용 언어에 대한 사전 지식을 이용하지 않으면서 문서 영상의 분할 및 구성요소 분류에서 좋은 성능을 보인다. 제안한 방법은 멀티미디어 데이터 검색, 실시간 영상 처리 등과 같은 다양한 분야에 적용 될 수 있다.
본 논문은 형태 처리기법과 연결요소 분석을 이용한 문서 영상의 분할과 구조적인 특징과 투영 프로파일 분석을 이용하여 문서영상에서 제목영역 추출방안을 제안한다. 문서 영상의 처리는 영상 분할과 제목 추출, 두 단계로 이루어진다. 영상 분할의 단계에서는 문서 영상을 구성요소 영역들로 나눈다. 영상 분할이 끝나면 분할된 영역들을 대상으로 구조적인 정보를 이용하여 제목이 될 후보 영역을 추출한다. 제목이 아닌 영역을 제거하여 제목 후보영역을 추출하고 난 후 투영 프로파일을 분석하여 제목 영역을 최종적으로 추출한다. 본 논문에서 제시된 투영 프로파일 분석을 이용한 제목 추출 방법은 다양한 문서 영상의 분할 및 제목 추출 결과를 보였으며, 문서 제목 인식, 멀티미디어 데이터 검색, 실시간 영상처리와 같은 다양한 응용분야에 활용될 것으로 기대된다.
Xiong, Wei;Jia, Xiuhong;Yang, Dichun;Ai, Meihui;Li, Lirong;Wang, Song
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권5호
/
pp.1778-1797
/
2021
Document image binarization is an important pre-processing step in document analysis and archiving. The state-of-the-art models for document image binarization are variants of encoder-decoder architectures, such as FCN (fully convolutional network) and U-Net. Despite their success, they still suffer from three limitations: (1) reduced feature map resolution due to consecutive strided pooling or convolutions, (2) multiple scales of target objects, and (3) reduced localization accuracy due to the built-in invariance of deep convolutional neural networks (DCNNs). To overcome these three challenges, we propose an improved semantic segmentation model, referred to as DP-LinkNet, which adopts the D-LinkNet architecture as its backbone, with the proposed hybrid dilated convolution (HDC) and spatial pyramid pooling (SPP) modules between the encoder and the decoder. Extensive experiments are conducted on recent document image binarization competition (DIBCO) and handwritten document image binarization competition (H-DIBCO) benchmark datasets. Results show that our proposed DP-LinkNet outperforms other state-of-the-art techniques by a large margin. Our implementation and the pre-trained models are available at https://github.com/beargolden/DP-LinkNet.
In this paper, we describe a novel method for document layout analysis that is based on a Fuzzy Energy Matrix (FEM). A FEM is a two-dimensional matrix that contains the likelihood of text and non-text and is generated through the use of Fuzzy theory. The key idea is to define an Energy map for the document to categorize text and non-text. The proposed mechanism is designed for execution with a low-resolution document image, and hence our method has a fast processing speed. The proposed method has been tested on public ICDAR 2009 datasets to conduct a comparison against other state-of-the-art methods, and it was also tested with Korean documents. The results of the experiment indicate that this scheme achieves superior segmentation accuracy, in terms of both precision and recall, and also requires less time for computation than other state-of-the-art document image analysis methods.
KSII Transactions on Internet and Information Systems (TIIS)
/
제9권10호
/
pp.4072-4091
/
2015
A separation of text and non-text elements plays an important role in document layout analysis. A number of approaches have been proposed but the quality of separation result is still limited due to the complex of the document layout. In this paper, we present an efficient method for the classification of text and non-text components in document image. It is the combination of whitespace analysis with multi-layer homogeneous regions which called recursive filter. Firstly, the input binary document is analyzed by connected components analysis and whitespace extraction. Secondly, a heuristic filter is applied to identify non-text components. After that, using statistical method, we implement the recursive filter on multi-layer homogeneous regions to identify all text and non-text elements of the binary image. Finally, all regions will be reshaped and remove noise to get the text document and non-text document. Experimental results on the ICDAR2009 page segmentation competition dataset and other datasets prove the effectiveness and superiority of proposed method.
본 논문에서는 블록의 속성과 질감특징을 이용하여 효과적인 블록 분류 방법을 제안하였다. 제안한 방법에서는 먼저 명암도 문서영상을 이진화한 후, 평활화 기법을 적용하여 블록의 위치정보와 본 논문에서 사용할 특징 중에 하나인 각 블록의 내부에 있는 작은 블록들의 최대 높이 값을 구하였다. 이 위치정보들을 이용하여 문서영상을 각 블록으로 분할한다. 이 블록의 명암도 블록영상에서 문서의 속성이 잘 반영된 (0,1) 방향의 공간 명암도 의존 행렬을 구하여 7가지 질감특징을 구하였다. 먼저 블록의 속성을 최소거리 규칙(Nearest Neighbor Rule)에 입력하여 문자와 비문자 영역으로, 상세분류를 위하여 7가지 질감특징을 이용하여 큰 문자, 작은 문자, 표, 그래픽 및 사진 등으로 구분함으로써 문서인식을 위한 구조 해석뿐만 아니라 다양한 응용 분야에 효과적으로 이용될 수 있도록 하였다.
Automatic understanding of contents in document image is a very hard problem due to involvement with mathematically challenging problems originated mainly from the over-determined system induced by document segmentation process. In both academic and industrial areas, there have been incessant and various efforts to improve core parts of content retrieval technologies by the means of separating out segmentation related issues using semi-structured document, e.g., invoice,. In this paper we proposed classification models for text lines on invoice document in which text lines were clustered into the five categories in accordance with their contents: purchase order header, invoice header, summary header, surcharge header, purchase items. Our investigation was concentrated on the performance of machine learning based models in aspect of linear-discriminant-analysis (LDA) and non-LDA (logic based). In the group of LDA, na$\"{\i}$ve baysian, k-nearest neighbor, and SVM were used, in the group of non LDA, decision tree, random forest, and boost were used. We described the details of feature vector construction and the selection processes of the model and the parameter including training and validation. We also presented the experimental results of comparison on training/classification error levels for the models employed.
We propose a method for analyzing the document structure. This method consists of two processes, segmentation and classification. The segmentation first divides a low resolution image, and then finely splits the original document image using projection profiles. The classification deterimines each segmented region as text, line, table or image. An experiment with 238 documents images shows that the segmentation accuracy is 99.1% and the classification accuracy is 97.3%.
In this paper, we propose a novel segmentation and classification method using texture features for the document image. First, we extract the local entropy and then segment the document image to separate the background and the foreground using the Otsu's method. Finally, we classify the segmented regions into each component using PCA(principle component analysis) algorithm based on the texture features that are extracted from the co-occurrence matrix for the entropy image. The entropy-based segmentation is robust to not only noise and the change of light, but also skew and rotation. Texture features are not restricted from any form of the document image and have a superior discrimination for each component. In addition, PCA algorithm used for the classifier can classify the components more robustly than neural network.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.