• Title/Summary/Keyword: docking

Search Result 623, Processing Time 0.027 seconds

Anti-inflammatory Activity of Sambucus Plant Bioactive Compounds against TNF-α and TRAIL as Solution to Overcome Inflammation Associated Diseases: The Insight from Bioinformatics Study

  • Putra, Wira Eka;Salma, Wa Ode;Rifa'i, Muhaimin
    • Natural Product Sciences
    • /
    • v.25 no.3
    • /
    • pp.215-221
    • /
    • 2019
  • Inflammation is the crucial biological process of immune system which acts as body's defense and protective response against the injuries or infection. However, the systemic inflammation devotes the adverse effects such as multiple inflammation associated diseases. One of the best ways to treat this entity is by blocking the tumor necrosis factor alpha ($TNF-{\alpha}$) and TNF-related apoptosis-inducing ligand (TRAIL) to avoid the proinflammation cytokines production. Thus, this study aims to evaluate the potency of Sambucus bioactive compounds as anti-inflammation through in silico approach. In order to assess that, molecular docking was performed to evaluate the interaction properties between the $TNF-{\alpha}$ or TRAIL with the ligands. The 2D structure of ligands were retrieved online via PubChem and the 3D protein modeling was done by using SWISS Model. The prediction results of the study showed that caffeic acid (-6.4 kcal/mol) and homovanillic acid (-6.6 kcal/mol) have the greatest binding affinity against the $TNF-{\alpha}$ and TRAIL respectively. This evidence suggests that caffeic acid and homovanillic acid may potent as anti-inflammatory agent against the inflammation associated diseases. Finally, this study needs further examination and evaluation to validate the potency of Sambucus bioactive compounds.

Service Life Prediction of Marine Rubber Fender

  • Woo, Chang-Su;Park, Hyun-Sung;Sung, Il-Kyung;Yun, Soon-Hwan;Lee, Jae-Moon
    • Elastomers and Composites
    • /
    • v.54 no.1
    • /
    • pp.70-76
    • /
    • 2019
  • The function and purpose of the marine rubber fender, to prevent the damage of the ship and the mooring while the ship is being attached to the pier. However, maintenance of the fender after installation is not enough, because it is generally handled as an attachment facility. Estimation the life of a marine rubber fender is important in the maintenance of a port. When manufacturers design and produce marine rubber fenders, they do so according to various conditions such as the reaction force acting on the hull and docking vessel and deformation after absorbing the kinetic energy of the ship. In this study, a method for predicting and evaluating service life from the product design and development stage was established, in order to evaluate the durability of the marine rubber fenders. The SSp-300H and HSP-300H models were used to predict the service life. The method developed in this study, is expected to predict the service life of the marine rubber fender accurately and in a comparatively shorter time, thereby contributing to the evaluation standard and quality stability of the product.

Distributed control system architecture for deep submergence rescue vehicles

  • Sun, Yushan;Ran, Xiangrui;Zhang, Guocheng;Wu, Fanyu;Du, Chengrong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.274-284
    • /
    • 2019
  • The control architectures of Chuan Suo (CS) deep submergence rescue vehicle are introduced. The hardware and software architectures are also discussed. The hardware part adopts a distributed control system composed of surface and underwater nodes. A computer is used as a surface control machine. Underwater equipment is based on a multi-board-embedded industrial computer with PC104 BUS, which contains IO, A/D, D/A, eight-channel serial, and power boards. The hardware and software parts complete data transmission through optical fibers. The software part involves an IPC of embedded Vxworks real-time operating system, upon which the operation of I/O, A/D, and D/A boards and serial ports is based on; this setup improves the real-time manipulation. The information flow is controlled by the software part, and the thrust distribution is introduced. A submergence vehicle heeling control method based on ballast water tank regulation is introduced to meet the special heeling requirements of the submergence rescue vehicle during docking. Finally, the feasibility and reliability of the entire system are verified by a pool test.

Single-port robot-assisted prosthetic breast reconstruction with the da Vinci SP Surgical System: first clinical report

  • Joo, Oh Young;Song, Seung Yong;Park, Hyung Seok;Roh, Tai Suk
    • Archives of Plastic Surgery
    • /
    • v.48 no.2
    • /
    • pp.194-198
    • /
    • 2021
  • Robot-assisted nipple-sparing mastectomy with immediate reconstruction is currently performed in an attempt to seek smaller and indistinct incisions. Robotic surgery system has been evolving under the concept of minimal invasive technique which is a recent trend in surgery. One of the latest version is the da Vinci SP Surgical System (Intuitive Surgical). In this report, we will share our experiences. Two patients underwent robot-assisted nipple-sparing mastectomy, each followed by immediate robot-assisted expander insertion and prepectoral direct-to-implant breast reconstruction, respectively. There was no open conversion or major postoperative complication. One patient experienced mild infection, which was resolved by intravenous antibiotic treatment. Simple docking process, multi-joint instruments, and thirdarm functionality are among the new surgical system's advantages. The present cases suggest that robot-assisted nipple-sparing mastectomy with immediate reconstruction using the da Vinci SP Surgical System is feasible and safe. The promising features and potential application of da Vinci SP in breast reconstruction need further study.

Development of a framework to estimate the sea margin of an LNGC considering the hydrodynamic characteristics and voyage

  • You, Youngjun;Choi, Jin Woo;Lee, Dong Young
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.184-198
    • /
    • 2020
  • Decisions of the design speed, MCR, and engine capacity have been empirically made by assuming the value termed the sea margin. Due to ambiguity regarding the effect of some factors on the sea margin, the value has been commonly decided based on experience. To evaluate the value from a new viewpoint, it is necessary to construct an approach to estimate the sea margin through an objective procedure based on a physical and mathematical model. In this paper, a framework to estimate the actual sea margin of an LNGC based on the maneuvering equations of motion is suggested by considering the hull, propeller, rudder, and given sea route under wind and waves. The fouling effect is additionally quantified as the increase of total resistance by considering the re-docking period. The operation data is reviewed to amend the increase of the total resistance considering the speed loss of a ship. Finally, the factor of how much the resistance increases due to fouling is newly obtained for the vessel. Based on the comparison of the estimated sea margin with the empirical range of the sea margin, the constructed framework is regarded as feasible.

In silico discovery and evaluation of phytochemicals binding mechanism against human catechol-O-methyltransferase as a putative bioenhancer of L-DOPA therapy in Parkinson disease

  • Rath, Surya Narayan;Jena, Lingaraja;Bhuyan, Rajabrata;Mahanandia, Nimai Charan;Patri, Manorama
    • Genomics & Informatics
    • /
    • v.19 no.1
    • /
    • pp.7.1-7.13
    • /
    • 2021
  • Levodopa (L-DOPA) therapy is normally practised to treat motor pattern associated with Parkinson disease (PD). Additionally, several inhibitory drugs such as Entacapone and Opicapone are also cosupplemented to protect peripheral inactivation of exogenous L-DOPA (~80%) that occurs due to metabolic activity of the enzyme catechol-O-methyltransferase (COMT). Although, both Entacapone and Opicapone have U.S. Food and Drug Administration approval but regular use of these drugs is associated with high risk of side effects. Thus, authors have focused on in silico discovery of phytochemicals and evaluation of their effectiveness against human soluble COMT using virtual screening, molecular docking, drug-like property prediction, generation of pharmacophoric property, and molecular dynamics simulation. Overall, study proposed, nine phytochemicals (withaphysalin D, withaphysalin N, withaferin A, withacnistin, withaphysalin C, withaphysalin O, withanolide B, withasomnine, and withaphysalin F) of plant Withania somnifera have strong binding efficiency against human COMT in comparison to both of the drugs i.e., Opicapone and Entacapone, thus may be used as putative bioenhancer in L-DOPA therapy. The present study needs further experimental validation to be used as an adjuvant in PD treatment.

Single-Port Transaxillary Robot-Assisted Latissimus Dorsi Muscle Flap Reconstruction for Poland Syndrome: Concomitant Application of Robotic System to Contralateral Augmentation Mammoplasty

  • Hwang, Yong-Jae;Chung, Jae-Ho;Lee, Hyung-Chul;Park, Seung-Ha;Yoon, Eul-Sik
    • Archives of Plastic Surgery
    • /
    • v.49 no.3
    • /
    • pp.373-377
    • /
    • 2022
  • Currently, robot-assisted latissimus dorsi muscle flap (RLDF) surgery is used in treating patients with Poland syndrome and for breast reconstruction. However, conventional RLDF surgery has several inherent issues. We resolved the existing problems of the conventional system by introducing the da Vinci single-port system in patients with Poland syndrome. Overall, three patients underwent RLDF surgery using the da Vinci single-port system with gas insufflation. In the female patient, after performing RLDF with silicone implant, augmentation mammoplasty was also performed on the contralateral side. Both surgeries were performed as single-port robotic-assisted surgery through the transaxillary approach. The mean operating time was 449 (335-480) minutes; 8.67 (4-14) minutes were required for docking and 59 (52-67) minutes for robotic dissection and LD harvesting. No patients had perioperative complication and postoperative problems related to gas inflation. The single-port robot-assisted surgical system overcomes the drawbacks of previous robotic surgery in patients with Poland syndrome, significantly shortens the procedure time of robotic surgery, has superior cosmetic outcomes in a surgical scar, and improves the operator's convenience. Furthermore, concurrent application to another surgery demonstrates the possibility in the broad application of the robotic single-port surgical system.

Analysis and Operation System of the Information System of the Pilot and Tugs (도·예선 정보체계 분석 및 운영 시스템 개발)

  • Woo-Lee;Sang-Hyun Kim;Seung-Hong Oh;Min-Woo Son;Won-Jung Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.143-148
    • /
    • 2023
  • Currently, pilots and tugs perform the function of minimizing or eliminating property damage by preventing accidents on ships, ports, and human life by supporting docking/unloading and access and departure of ships. The piloting/tuging system is an essential function for the smooth functioning of the port, and it is the system that has the greatest influence on the cargo volume of the port. In this study, we developed an pilot and tugs information system analysis and operating system that can improve port operation efficiency, reduce the waiting time of ships, optimize the operation of ships, and allocate optimal pilots and tugs by utilizing the operation information of the tugbosts.

N-Terminal Modifications of Ubiquitin via Methionine Excision, Deamination, and Arginylation Expand the Ubiquitin Code

  • Nguyen, Kha The;Ju, Shinyeong;Kim, Sang-Yoon;Lee, Chang-Seok;Lee, Cheolju;Hwang, Cheol-Sang
    • Molecules and Cells
    • /
    • v.45 no.3
    • /
    • pp.158-167
    • /
    • 2022
  • Ubiquitin (Ub) is post-translationally modified by Ub itself or Ub-like proteins, phosphorylation, and acetylation, among others, which elicits a variety of Ub topologies and cellular functions. However, N-terminal (Nt) modifications of Ub remain unknown, except the linear head-to-tail ubiquitylation via Nt-Met. Here, using the yeast Saccharomyces cerevisiae and an Nt-arginylated Ub-specific antibody, we found that the detectable level of Ub undergoes Nt-Met excision, Nt-deamination, and Nt-arginylation. The resulting Nt-arginylated Ub and its conjugated proteins are upregulated in the stationary-growth phase or by oxidative stress. We further proved the existence of Nt-arginylated Ub in vivo and identified Nt-arginylated Ub-protein conjugates using stable isotope labeling by amino acids in cell culture (SILAC)-based tandem mass spectrometry. In silico structural modeling of Nt-arginylated Ub predicted that Nt-Arg flexibly protrudes from the surface of the Ub, thereby most likely providing a docking site for the factors that recognize it. Collectively, these results reveal unprecedented Nt-arginylated Ub and the pathway by which it is produced, which greatly expands the known complexity of the Ub code.

Research on the Development of China "Supermarket-Farmer Direct Purchase" Mode

  • Huang, Yanyan;Kang, Tae-won
    • The Korean Journal of Franchise Management
    • /
    • v.4 no.1
    • /
    • pp.113-129
    • /
    • 2013
  • The realization of agricultural modernization, the solving of the "three rural" issue as well as the increment of farmers' income is one of China's top priority. Thus, under the support and encouragement of government's relevant policies, China has introduced the "Supermarket-Farmer Direct Purchase" which is a new mode for the supply of agricultural products. This is an innovative of agricultural products circulation mode, and the comprehensive promotion will help supermarkets get cheap goods directly from the hands of farmers, thus forming price competitiveness; farmers can also get profits and subsidies from supermarkets which can eliminate middlemen's profit, thus increasing their revenue; consumers can both get a guarantee of food safety and save expenses, and the win-win situation for the supermarkets, farmers, and consumers will be achieved. However, the dilemma between "farmers having difficulty in selling" and "supermarkets having difficulty in buying" is still frequent. So in this thesis, through theoretical research and situation analysis, each relevant part of the "Supermarket-Farmer Direct Purchase" mode will be studied as a whole. Moreover, effectiveness will be evaluated and relevant problems will be identified. Then, based on foreign experience and our national conditions, new modes and advice will be provided for users in different circumstances.