• Title/Summary/Keyword: dnn

Search Result 399, Processing Time 0.022 seconds

Improvement of PM10 Forecasting Performance using DNN and Secondary Data (DNN과 2차 데이터를 이용한 PM10 예보 성능 개선)

  • Yu, SukHyun;Jeon, YoungTae
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.10
    • /
    • pp.1187-1198
    • /
    • 2019
  • In this study, we propose a new $PM_{10}$ forecasting model for Seoul region using DNN(Deep Neural Network) and secondary data. The previous numerical and Julian forecast model have been developed using primary data such as weather and air quality measurements. These models give excellent results for accuracy and false alarms, but POD is not good for the daily life usage. To solve this problem, we develop four secondary factors composed with primary data, which reflect the correlations between primary factors and high $PM_{10}$ concentrations. The proposed 4 models are A(Anomaly), BT(Back trajectory), CB(Contribution), CS(Cosine similarity), and ALL(model using all 4 secondary data). Among them, model ALL shows the best performance in all indicators, especially the PODs are improved.

Fast speaker adaptation using extended diagonal linear transformation for deep neural networks

  • Kim, Donghyun;Kim, Sanghun
    • ETRI Journal
    • /
    • v.41 no.1
    • /
    • pp.109-116
    • /
    • 2019
  • This paper explores new techniques that are based on a hidden-layer linear transformation for fast speaker adaptation used in deep neural networks (DNNs). Conventional methods using affine transformations are ineffective because they require a relatively large number of parameters to perform. Meanwhile, methods that employ singular-value decomposition (SVD) are utilized because they are effective at reducing adaptive parameters. However, a matrix decomposition is computationally expensive when using online services. We propose the use of an extended diagonal linear transformation method to minimize adaptation parameters without SVD to increase the performance level for tasks that require smaller degrees of adaptation. In Korean large vocabulary continuous speech recognition (LVCSR) tasks, the proposed method shows significant improvements with error-reduction rates of 8.4% and 17.1% in five and 50 conversational sentence adaptations, respectively. Compared with the adaptation methods using SVD, there is an increased recognition performance with fewer parameters.

Analysis of Input Factors of DNN Forecasting Model Using Layer-wise Relevance Propagation of Neural Network (신경망의 계층 연관성 전파를 이용한 DNN 예보모델의 입력인자 분석)

  • Yu, SukHyun
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.1122-1137
    • /
    • 2021
  • PM2.5 concentration in Seoul could be predicted by deep neural network model. In this paper, the contribution of input factors to the model's prediction results is analyzed using the LRP(Layer-wise Relevance Propagation) technique. LRP analysis is performed by dividing the input data by time and PM concentration, respectively. As a result of the analysis by time, the contribution of the measurement factors is high in the forecast for the day, and those of the forecast factors are high in the forecast for the tomorrow and the day after tomorrow. In the case of the PM concentration analysis, the contribution of the weather factors is high in the low-concentration pattern, and that of the air quality factors is high in the high-concentration pattern. In addition, the date and the temperature factors contribute significantly regardless of time and concentration.

Discernment of Android User Interaction Data Distribution Using Deep Learning

  • Ho, Jun-Won
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.3
    • /
    • pp.143-148
    • /
    • 2022
  • In this paper, we employ deep neural network (DNN) to discern Android user interaction data distribution from artificial data distribution. We utilize real Android user interaction trace dataset collected from [1] to evaluate our DNN design. In particular, we use sequential model with 4 dense hidden layers and 1 dense output layer in TensorFlow and Keras. We also deploy sigmoid activation function for a dense output layer with 1 neuron and ReLU activation function for each dense hidden layer with 32 neurons. Our evaluation shows that our DNN design fulfills high test accuracy of at least 0.9955 and low test loss of at most 0.0116 in all cases of artificial data distributions.

A Review of Structural Testing Methods for ASIC based AI Accelerators

  • Umair, Saeed;Irfan Ali, Tunio;Majid, Hussain;Fayaz Ahmed, Memon;Ayaz Ahmed, Hoshu;Ghulam, Hussain
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.103-111
    • /
    • 2023
  • Implementing conventional DFT solution for arrays of DNN accelerators having large number of processing elements (PEs), without considering architectural characteristics of PEs may incur overwhelming test overheads. Recent DFT based techniques have utilized the homogeneity and dataflow of arrays at PE-level and Core-level for obtaining reduction in; test pattern volume, test time, test power and ATPG runtime. This paper reviews these contemporary test solutions for ASIC based DNN accelerators. Mainly, the proposed test architectures, pattern application method with their objectives are reviewed. It is observed that exploitation of architectural characteristic such as homogeneity and dataflow of PEs/ arrays results in reduced test overheads.

An Efficient Dynamic Workload Balancing Strategy (DNN을 이용한 중환자 상태 징후 조기 예측)

  • Hyun-Suk Yoon;Gil-Sik Park;Hae-Jong Joo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.325-327
    • /
    • 2024
  • 국내외에서 AI기반 의료 솔루션 시장은 빠른 속도로 확장 중이며 이에 따른 다양한 의학 분야에서 많은 기법을 통한 의료 AI 시스템이 등장하고 있다. 그러나 기존 다양한 AI 연구가 이뤄짐에도 아직 중환자의 징후 예측에는 많은 어려움이 있다. 또한, 중환자의 경우 현재 의료진만으로 모든 환자를 필요한 시기에 진료하기엔 어려움이 있고 환자 상태 조기 예측이 필수적임을 관련 다양한 의학 기사를 통해 쉽게 인지할 수 있다. 본 연구에서는 위와 같은 문제점을 해결하고자 중환자의 진료 결과 데이터를 활용하여 환자의 진료 후 상태를 예측하는 모델을 생성하였다. '용인시산업진흥원'에서 제공하는 60만여 건에 달하는 환자 데이터를 수집하여, 중환자 상태 징후를 조기에 예측할 수 있는 머신러닝/딥러닝 기반 알고리즘으로 구현한 여러 모델에 대해 비교했을 때 딥러닝(DNN) 기반 모델이 약 92%의 분류 정확도를 측정할 수 있었다.

  • PDF

Development of a deep neural network model to estimate solar radiation using temperature and precipitation (온도와 강수를 이용하여 일별 일사량을 추정하기 위한 심층 신경망 모델 개발)

  • Kang, DaeGyoon;Hyun, Shinwoo;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.2
    • /
    • pp.85-96
    • /
    • 2019
  • Solar radiation is an important variable for estimation of energy balance and water cycle in natural and agricultural ecosystems. A deep neural network (DNN) model has been developed in order to estimate the daily global solar radiation. Temperature and precipitation, which would have wider availability from weather stations than other variables such as sunshine duration, were used as inputs to the DNN model. Five-fold cross-validation was applied to train and test the DNN models. Meteorological data at 15 weather stations were collected for a long term period, e.g., > 30 years in Korea. The DNN model obtained from the cross-validation had relatively small value of RMSE ($3.75MJ\;m^{-2}\;d^{-1}$) for estimates of the daily solar radiation at the weather station in Suwon. The DNN model explained about 68% of variation in observed solar radiation at the Suwon weather station. It was found that the measurements of solar radiation in 1985 and 1998 were considerably low for a small period of time compared with sunshine duration. This suggested that assessment of the quality for the observation data for solar radiation would be needed in further studies. When data for those years were excluded from the data analysis, the DNN model had slightly greater degree of agreement statistics. For example, the values of $R^2$ and RMSE were 0.72 and $3.55MJ\;m^{-2}\;d^{-1}$, respectively. Our results indicate that a DNN would be useful for the development a solar radiation estimation model using temperature and precipitation, which are usually available for downscaled scenario data for future climate conditions. Thus, such a DNN model would be useful for the impact assessment of climate change on crop production where solar radiation is used as a required input variable to a crop model.

Estimation for Ground Air Temperature Using GEO-KOMPSAT-2A and Deep Neural Network (심층신경망과 천리안위성 2A호를 활용한 지상기온 추정에 관한 연구)

  • Taeyoon Eom;Kwangnyun Kim;Yonghan Jo;Keunyong Song;Yunjeong Lee;Yun Gon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.2
    • /
    • pp.207-221
    • /
    • 2023
  • This study suggests deep neural network models for estimating air temperature with Level 1B (L1B) datasets of GEO-KOMPSAT-2A (GK-2A). The temperature at 1.5 m above the ground impact not only daily life but also weather warnings such as cold and heat waves. There are many studies to assume the air temperature from the land surface temperature (LST) retrieved from satellites because the air temperature has a strong relationship with the LST. However, an algorithm of the LST, Level 2 output of GK-2A, works only clear sky pixels. To overcome the cloud effects, we apply a deep neural network (DNN) model to assume the air temperature with L1B calibrated for radiometric and geometrics from raw satellite data and compare the model with a linear regression model between LST and air temperature. The root mean square errors (RMSE) of the air temperature for model outputs are used to evaluate the model. The number of 95 in-situ air temperature data was 2,496,634 and the ratio of datasets paired with LST and L1B show 42.1% and 98.4%. The training years are 2020 and 2021 and 2022 is used to validate. The DNN model is designed with an input layer taking 16 channels and four hidden fully connected layers to assume an air temperature. As a result of the model using 16 bands of L1B, the DNN with RMSE 2.22℃ showed great performance than the baseline model with RMSE 3.55℃ on clear sky conditions and the total RMSE including overcast samples was 3.33℃. It is suggested that the DNN is able to overcome cloud effects. However, it showed different characteristics in seasonal and hourly analysis and needed to append solar information as inputs to make a general DNN model because the summer and winter seasons showed a low coefficient of determinations with high standard deviations.

A Digital Twin Software Development Framework based on Computing Load Estimation DNN Model (컴퓨팅 부하 예측 DNN 모델 기반 디지털 트윈 소프트웨어 개발 프레임워크)

  • Kim, Dongyeon;Yun, Seongjin;Kim, Won-Tae
    • Journal of Broadcast Engineering
    • /
    • v.26 no.4
    • /
    • pp.368-376
    • /
    • 2021
  • Artificial intelligence clouds help to efficiently develop the autonomous things integrating artificial intelligence technologies and control technologies by sharing the learned models and providing the execution environments. The existing autonomous things development technologies only take into account for the accuracy of artificial intelligence models at the cost of the increment of the complexity of the models including the raise up of the number of the hidden layers and the kernels, and they consequently require a large amount of computation. Since resource-constrained computing environments, could not provide sufficient computing resources for the complex models, they make the autonomous things violate time criticality. In this paper, we propose a digital twin software development framework that selects artificial intelligence models optimized for the computing environments. The proposed framework uses a load estimation DNN model to select the optimal model for the specific computing environments by predicting the load of the artificial intelligence models with digital twin data so that the proposed framework develops the control software. The proposed load estimation DNN model shows up to 20% of error rate compared to the formula-based load estimation scheme by means of the representative CNN models based experiments.

DNN-Based Adaptive Optimal Learning Controller for Uncertain Robot Systems (동적 신경망에 기초한 불확실한 로봇 시스템의 적응 최적 학습제어기)

  • 정재욱;국태용;이택종
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.6
    • /
    • pp.1-10
    • /
    • 1997
  • This paper presents an adaptive optimal learning controller for uncertian robot systems which makes use fo simple DNN(dynamic neural network) units to estimate uncertain parameters and learn the unknown desired optimal input. With the aid of a lyapunov function, it is shown that all that error signals in the system are bounded and the robot trajectory converges to the desired one globally exponentially. The effectiveness of the proposed controller is hsown by applying the controller to a 2-DOF robot manipulator.

  • PDF