• Title/Summary/Keyword: divinylbenzene

Search Result 159, Processing Time 0.03 seconds

Polymer-Supported Crown Ethers(Ⅳ) Synthesis and Phase-transfer Catalytic Activity

  • Shim Jae Hu;Chung Kwang Bo;Masao Tomoi
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.3
    • /
    • pp.274-279
    • /
    • 1992
  • Immobilization method of lariat azacrown ethers, containing hydroxyl group in the side arm of crown ring, on the polymer matrix and the phase-transfer catalytic activity of thus obtained immobilized lariat azacrown ethers were studied. Polystyrene resins with crown ether structures and hydroxyl groups adjacent to the macrorings were prepared by the reaction of crosslinked polystyrene resins containing epoxy groups with monoaza-15-crown-5 or monoaza-18-crown-6. Microporous crosslinked polystyrene resins containing epoxy group for the syntheses of these immobilized lariat crown catalysts were prepared by suspension polymerization of styrene, divinylbenzene (DVB 2%) and vinylbenzylglycidyl ether. The immobilized lariat catalysts with 10-20% ring substitution exhibited maximal activity for the halogen exchange reactions of 1-bromooctane with aqueous KI or NaI under triphase heterogeneous conditions. Immobilized catalyst exhibited higher activity than corresponding catalyst without the hydroxyl group and this result was suggested that the active site have a structure in which the $K^+$ ion was bound by the cooperative coordination of the crown ring donors and the hydroxyl group in the side arm.

Studies on the Separation and Preconcentration of Metal Ions by Chelating Resin containing (Polystyrene-divinylbenzene)-thiazolylazo Phenol Derivatives(I) ((Polystyrene-divinylbenzene)-thiazolylazo phenol형 킬레이트 수지에 의한 금속이온의 분리 및 농축에 관한 연구(I))

  • Lim, Jae-Hee;Kim, Min-Kyun;Lee, Chang-Hun;Lee, Won
    • Analytical Science and Technology
    • /
    • v.9 no.3
    • /
    • pp.279-291
    • /
    • 1996
  • The new chelating resins, XAD-2, 4, 16-TAC and XAD-2, 4, 16-TAO were synthesized by Amberlite XAD-2, XAD-4, and XAD-16 macroreticular resins with 2-(2-thiazolylazo)-p-cresol(TAC) and 4-(2-thiazolylazo)orcinol(TAO) as functional groups and were characterized by elemental analysis and FT-IR spectrometry. It was found that the content of functional group in chelating resin was 0.60mmol/g in XAD-16-TAC and 0.68mmol/g in XAD-16-TAO respectively. The chelating resins were stable in acidic and alkaline solution and can be reused over 10 times. The sorption behavior of some metalions to two chelating resins was investigated by batch method, which included batch equilibrium, effect of pH, coexisting ions and masking agent. For the optimum condition of sorption, the time required for equilibrium was about 1 hour and optimum pH was 5. In the presence of anions such as ${SO_4}^{2-}$ and $CH_3COO^-$, the sorption of U(VI) ion was slightly reduced but other anions such as $Cl^-$ and $NO{_3}^-$ revealed no interference effect. Also, sorption capacity of U(VI) ion was decreased by addition of $CO{_3}^{2-}$ ion because of complex formation of $[UO_2(CO_3)_3]^{4-}$, but alkali metals and alkali earth metals including Na(I), K(I), Mg(II), and Ca(II) were not affected for the sorption extent. Masking agent, NTA showed better separation efficiency of U(VI) ion from coexisting metal ions such as Th(IV), Zr(IV), Hf(IV), Cu(II), Cd(II), Pb(II), Ni(II), Zn(II) and Mn(II) than EDTA, CDTA.

  • PDF

Studies on the Separation and Preconcentration of Metal Ions by Chelating Resin containing (Polystyrene-divinylbenzene)-thiazolylazo phenol Derivatives(II) ((Polystyrene-divinylbenzene)-thiazolylazo phenol형 킬레이트 수지에 의한 금속이온의 분리 및 농축에 관한 연구(II))

  • Lim, Jae-Hee;Seol, Kyung-Mi;An, Hye-Sook;Chung, Koo-Chun;Lee, Chang-Heon;Lee, Won
    • Analytical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.364-372
    • /
    • 1996
  • The sorption and desorption properties of U(VI), Th(IV), Zr(IV), Cu(II), Pb(II), Ni(II), Zn(II), Cd(II) and Mn(II) ions on XAD-16-[2-(2-thiazolylazo)-p-cresol](TAC) chelating resin were studied by elution method for selective separation, concentration and recovery of trace metal ions in sea water. The optimum conditions for the sorption of metal ions were examined with respect to flow rate, pH and concentration of buffer solution. The overall capacities of some metal ions on this chelating resin were 0.41mmol U(VI)/g resin, 0.55mmol Th(IV)/g resin, 0.43mmol Cu(II)/g resin, and 0.32mmol Zr(IV)/g resin, respectively. The elution order of metal ions obtained from breakthrough capacity and overall capacity at pH 5.0 was found as Th(IV)>Cu(II)>U(VI)>Zr(IV)>Pb(II)>Ni(II)>Zn(II)>Cd(II)>Mn(II). Desorption of characteristics for metal ions were investigated with desorption agents such as $HNO_3$, HCl, $HClO_4$, $H_2SO_4$, and $Na_2CO_3$. It was found that most of metal ions except Zr(IV) showed high desorption efficiency with 2M $HNO_3$. But, desorption and recovery of Zr(IV) ion were successfully performed with 1M $H_2SO_4$. The resin was applied for separation and preconcentration of trace amount of U(VI) ion from artificial sea water and the recovery of U(IV) was over 96%.

  • PDF

Active Transport Characteristics of Anions through a Cell Membrane Model which Irradiated by γ-ray (감마선이 조사된 세포막모델을 통한 음이온의 능동 전달 특성)

  • Ko, In-Ho;Yeo, Jin-Dong
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.4
    • /
    • pp.187-195
    • /
    • 2015
  • The active transport characteristics of anions of cell membrane model which irradiated by $^{60}Co\;{\gamma}-ray$ was investigated. The cell membrane model used in this experiment was a sulfonated copolymerized membrane of poly(1-methyl-4-vinylpyridiniumiodide-co-divinylbenzene : MeVP-DVBI). First, the initial flux of $OH^-$ and $Cl^-$, $Na^+$ of membrane which was not irradiated was decreased with increase of thickness of membrane $80-200{\mu}m$, increased with increase of NaOH concentration 0-0.5mol/L and MeVP-DVBI concentration 20-80% was increased with initial flux of $OH^-$ and $Cl^-$, decreased with initial flux of $Na^+$. Second, the initial flux of membrane which was irradiated was less than that. And the driving force of pH of irradiated membrane was significantly increased more than membrane which was not irradiated. The initial flux of the $OH^-$ ion was decreased with increase of $H^+$ ion concentration. As selective transport of $OH^-$ and $Cl^-$ of cell membrane model were abnormal, cell damages were appeared at cell.

Preparation of Anion Exchange Membranes for Electrodialysis by Impregnating Porous Polyethylene Films with Crosslinked Poly(vinylbenzyl ammonium chloride)s (다공성 폴리에틸렌 필름에 가교된 poly(vinylbenzyl ammonium chloride)를 충진한 전기투석용 음이온 교환 복합막의 제조)

  • Kim, Jeong-Hoon;Lee, Jung-Soo;Yoo, Min-Chul;Chang, Bong-Jun;Kang, Ho;Lee, Soo-Bok
    • Membrane Journal
    • /
    • v.18 no.2
    • /
    • pp.138-145
    • /
    • 2008
  • A series of anion exchange composite membranes were prepared and characterized for electro-dialysis process used in the removal of toxic anion and cation polutants in groundwater or wastewater. The membranes were prepared as follows; first, porous poly(ethylene) (PE) substrates were fully impregnated with monomer mixtures with various ratio of vinylbenzylchloride (VBC), divinylbenzene (DVB) and ${\alpha},\;{\alpha}$-azobis(isobutyronitrile) (AIBN). Second, they were thermally polymerized to yield crosslinked poly(VBC-DVB)/PE composite membranes. Finally, the membranes were treated in trimethylamine (TMA)/acetone to give $-N^+(CH_3)_3$-containing poly(VBC-DVB)/PE membranes. The basic membrane properties such as ion exchange capacity (IEC), electric resistance and water content of the resulting membranes were measured as a function of VBC/DVB and TMA/Acetone content. As a result, the composite membranes showed lower electric resistance, lower water content and higher IEC than commercial anion exchange membranes (AMX, Astom) due to thin PE substrates, indicating that the composite membranes could be successfully applied to the electrodialysis for water treatment.

Preparation of Crosslinked Polyvinylbenzylchloride Anion Exchange Composite Membranes using Fabric Substrates and Their Electrodialysis Application for Ion Removal (천지지체를 사용한 가교화된 폴리비닐벤질클로라이드 음이온교환 복합막의 제조와 전기투석을 이용한 이온 제거 특성연구)

  • Lee, Jung-Soo;Chang, Bong-Jun;Kim, Jeong-Hoon;Kim, Dong-Kwon
    • Membrane Journal
    • /
    • v.20 no.2
    • /
    • pp.142-150
    • /
    • 2010
  • A series of anion exchange composite membranes were prepared and characterized for electrodialysis processes used in the removal of nitrate nitrogen and ions in groundwater. The membranes were prepared as follows; first, fabric substrates were fully impregnated with monomer mixtures of vinylbenzylchloride (VBC), divinylbenzene (DVB), Styrene (ST) and $\alpha,\alpha$-Azobis(isobutyronitrile) (AIBN). Second, they were thermally polymerized to yield crosslinked poly (VBCST- DVB)/fabric composite membranes. Finally, the membranes were treated with trimethylamine (TMA) / acetone to give $-N^+(CH_3)_3^-$-containing poly(VBC-ST-DVB)/fabric membranes. The basic membrane properties such as ion exchange capacity (IEC), electric resistance and water content of the resulting membranes were measured as a function of VBC/DVB and TMA/Acetone content. As a result, the composite membranes showed lower electric resistance and higher IEC than commercial anion exchange membranes (AMX, Astom). Electrodialysis tests using the prepared membranes were carried out for the removal of various ions such as $NaNO_3$, $MgSO_4$ and NaF for 60 minutes. The results showed that the ions were removed below 1 mg/L within about 15 minutes which indicates that the anion exchange membranes prepared here could be applied to the electrodialysis process. as can be seen in the following that the ion conductivity values were almost no change after 15 minutes electrodialysis.

A Study on the Effect of Different Functional Groups in Anion Exchange Membranes for Vanadium Redox Flow Batteries (바나듐 산화환원 흐름전지를 위한 음이온교환막의 관능기에 따른 특성 연구)

  • Lee, Jae-Myeong;Lee, Mi-Soon;Nahm, Ki-Seok;Jeon, Jae-Deok;Yoon, Young-Gi;Choi, Young-Woo
    • Membrane Journal
    • /
    • v.27 no.5
    • /
    • pp.415-424
    • /
    • 2017
  • Commonly cation exchange membranes have been used for vanadium redox flow batteries. However, a severe vanadium ion cross-over causes low energy efficiency. Thus in this study, we prepared 3 different anion exchange membranes to investigate the effect on the membrane properties such as vanadium ion cross-over and long term stability. The base membranes were prepared by an electrolyte pore filling technique using vinyl benzyl chloride (VBC), divinylbenzene (DVB) within a porous polyethylene (PE) substrate. Then 3 different functional amines were introduced into the base membranes, respectively. These resulting membranes were evaluated by physico-chemical properties such as ion exchange capacity, dimensional stability, vanadium ion cross-over and membrane area resistance. Conclusively, TEA-functionalized membrane showed longest term stability than other membranes although all the membranes are similar to coulombic efficiency.

The Characteristic Calculation of a Phosphoric Acid Ion Exchanger using the Potentiometric Titration (전위차 적정법을 이용한 인산형 양이온교환수지의 특성 계산)

  • Kim, T.I.;Son, W.K.
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.871-875
    • /
    • 1999
  • We calculated the characteristics of a phosphoric cation exchanger and studied on an accurately computable method to determine the ion exchange capacity for type of potentiometric titration curve. The ion exchanger was prepared by phosphorylation of a styrene-divinylbenzene copolymer with 4% crosslinking. The ion exchange capacity is 5.7 meq/g. The experimental pK values versus ${\mathit{x}}$ in phosphoric cation exchanger can be expressed as a linear equation. The ${\Delta}pK$ values were obtained from the slope of linear equation. The ${\Delta}pK$ values are the differences of antilogarithms(pK) values of the apparent equilibrium constant at complete and zeroth neutralization of the ion exchanger. Also the experimental pK values at ${\mathit{x}}=0.5$ were accorded well with theoretical data. And when it is titrated with NaOH and $Ba(OH)_2$ solutions, a good agreement between experimental and theoretical pK values for various ${\mathit{x}}$ was seen in all the potentiometric titration curves. We knew that the inflection point of potentiometric titration curve in the case of divalent ions are changed much large than that for monovalent ions. If the relation between g values and ${\partial}pH/{\partial}g$ was plotted to the Lorentz distribution curve, ion exchange capacity can be accurately evaluated.

  • PDF

Suspension Polymerization with Hydrophobic Silica as a Stabilizer II. Preparation of Polystyrene Composite Particles Containing Carbon Black (소수성 실리카를 안정제로 하는 현탁중합 II. 카본블랙을 함유하는 폴리스티렌 복합체 입자의 합성)

  • Park, Moon-Soo
    • Polymer(Korea)
    • /
    • v.30 no.6
    • /
    • pp.505-511
    • /
    • 2006
  • We tried to prepare polystyrene composite particles containing carbon black by suspension polymerization with water as a reaction medium. Hydrophobic silica was selected as a stabilizer and oil-soluble azobisisobutyronitrile (AIBN), as an initiator. All polymerization reactions were carried out at a fixed temperature of $75^{\circ}C$. Stabilizer concentration was varied from $0.17{\sim}3.33wt%$ compared to water, where particles with $7.96{\mu}m$ in average diameter were obtained at 1.57 wt% of stabilizer. Increase in divinylbenzene concentration, as a crosslinking agent, from $0.1{\sim}1.0 wt%$ compared to monomer exhibited a large increase in average particle diameter Incorporation of 1wt% of carbon black compared to monomer produced an increase in average diameter It is speculated that viscosity lower than that necessary to induce even dispersion of carbon black particles led to poor dispersion, and as a result, large particles. For a styrene mixture containing 3 wt% carton black compared to monomer, enhanced dispersion due to an increase in carbon black concentration reduced average particle diameters. For styrene mixtures containing 1 and 3 wt% carbon black compared to monomer, preparticles before polymerization and polymer composite particles after polymerization showed a similar tendency towards particle formation. When carbon black concentration compared to monomer was increased to 5 and 7 wt%, styrene mixtures exhibited a large increase in viscosity and thus better dispersion of carbon black particles, which led to a decrease in preparticle diameters. However, these particles experienced agglomeration in the polymerization process, and polystyrene composite particles increased in average diameter.

The Preparation and Electrochemical Properties of Homogeneous Anion-exchange Composite Membranes Containing Acrylonitrile-butadiene Rubber (Acrylonitrile-butadiene rubber를 포함한 균질계 음이온교환 복합막의 제조 및 전기화학적 특성)

  • Song, Pu Reum;Mun, Hye Jin;Hong, Sung Kwon;Kim, Jeoung Hoon;Chang, Bong Jun
    • Membrane Journal
    • /
    • v.24 no.6
    • /
    • pp.463-471
    • /
    • 2014
  • While poly(styrene)-based anion exchange membranes have the advantage like easy and simple manufacturing process, they also possess the disadvantage of poor durability due to their brittleness. Acrylonitrile-butadiene rubber was used here as an additive to make the membranes have improved flexibility and durability. For the preparation of the anion exchange membranes, a PP mesh substrate was immersed into monomer solutions with vinylbenzyl chloride, styrene, divinylbenzene and benzoyl peroxide, then thermally polymerized & crosslinked. The prepared membranes were subsequently post-aminated using trimethylamine to result in $-N+(CH_3)_3$ group-containing composite membranes. Various contents of vinylbenzyl chloride and acrylonitrile-butadiene rubber were investigated to optimize the membrane properties and the prepared membranes were evaluated in terms of water content, ion exchange capacity and electric resistance. It was found that the optimized composite membranes showed higher IEC and lower electric resistance than a commercial anion exchange membrane(AMX) and have excellent flexibility and durability.