• Title/Summary/Keyword: diterpenoids

Search Result 43, Processing Time 0.021 seconds

Volatiles Composition from Aerial Parts of the Insect-Pollinated and the Promising Medicinal Plant Spiraea hypericifolia L. Growing Wild in Northern Kazakhstan

  • Kirillov, Vitaliy;Stikhareva, Tamara;Atazhanova, Gayane;Ercisli, Sezai;Makubayeva, Aigerim;Krekova, Yana;Rakhimzhanov, Alimzhan;Adekenov, Sergazy
    • Natural Product Sciences
    • /
    • v.27 no.1
    • /
    • pp.36-44
    • /
    • 2021
  • The essential oils from the aerial parts (leaves and flowers) of Spiraea hypericifolia L. (Rosaceae), collected in Northern Kazakhstan, were obtained by distillation in two dispersion media (distilled water and 15% NaCl solution). The chemical composition of the essential oils was evaluated by GC-MS for the first time. The yield of the essential oil was 0.04% (in fresh growth conditions) and 0.02% (in dry growth conditions) respectively regardless of which dispersion media (H2O or 15% NaCl solution) was used at the isolation of essential oil. The main compounds were aliphatic hydrocarbons (alkanes) (40.6-53.2%), aldehydes (8.4-17.4%), diterpenoids (9.1-16.7%) and ketones (6.2-8.7%). Content of monoterpenoids was depended on dispersion media (2.2-3.6% where H2O was dispersion media and 8.4-8.5% where 15% NaCl solution was dispersion media). n-Heneicosane (17.4-34.1%) and n-tricosane (14.3-19.5%) were the main constituents of the essential oil of S. hypericifolia. There were many insects from different classes in S. hypericifolia at flowering. Important components such as α-methylene-γ-butyrolactone (0.8-2.8%), benzyl cyanide (0.7-1.1%), β-damascenone (1.2-2.9%), (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (1.8-2.7%), β-ionone (0.5-1.8%) and others were detected in small amounts.

Analysis of characteristics of natural resins using organic residue analysis organic materials attached on wooden coffins from Singok-dong Site, Uijeongbu (유기잔존물 분석을 활용한 천연 수지 특성 분석 - 의정부 신곡동 유적 출토 목관 부착 유기물을 중심으로 -)

  • YUN, Eunyoung
    • Korean Journal of Heritage: History & Science
    • /
    • v.54 no.4
    • /
    • pp.78-89
    • /
    • 2021
  • Organic residues analysis is an analysis method that reveals the types of organic material samples by using the characteristic that main components constituting substances are different depending on the species of animals and plants. In this study, scientific analysis of the organic residues attached to wood coffins in the Joseon Dynasty Hoemyo excavated from the site of Singok-dong, Uijeongbu was used to identify the types of remnants and to use them as information to restore the uses of organic materials and the way they lived in the past. As a result of FT-IR analysis of the residue attached to the inside of the wood, it was estimated to be a natural plant resin material. In addition, as a result of analysis by GC-MS to confirm the characteristic factors of natural resins, diterpenoids (abietane) and pimaran (pimarane), such as dehydroabietic acid and pimaric acid (diterpenoid) compounds, and saturated and unsaturated fatty acid components were detected together. Diterpenoid compounds are components mainly found in Pinaceae resins. It is confirmed in the literature that rosin, a representative material of Pinaceae resin, was used as an adhesive material. Considering the situation where an organic material remained at the joint of the wood, the organic material attached to the wood is judged to be an adhesive material made of Pinaceae resin. In addition, the fatty acid component detected together is a component derived from plant oil, and it is presumed to be made by mixing rosin and oil as recorded in previous studies. This study confirms that organic residues remain in the burial environment without losing their characteristics. It is expected that scientific analysis of organic residues will be conducted in the future to accumulate information necessary for the interpretation of past living culture.

Pathogen, Insect and Weed Control Effects of Secondary Metabolites from Plants (식물유래 2차 대사물질의 병충해 및 잡초 방제효과)

  • Kim, Jong-Bum
    • Applied Biological Chemistry
    • /
    • v.48 no.1
    • /
    • pp.1-15
    • /
    • 2005
  • Pathogens, insects and weeds have significantly reduced agricultural productivity. Thus, to increase the productivity, synthetic agricultural chemicals have been overused. However, these synthetic compounds that are different from natural products cannot be broken down easily in natural systems, causing the destruction of soil quality and agricultural environments and the gradually difficulty in continuous agriculture. Now agriculture is faced with the various problems of minimizing the damage in agricultural environments, securing the safety of human health, while simultaneously increasing agricultural productivity. Meanwhile, plants produce secondary metabolites to protect themselves from external invaders and to secure their region for survival. Plants infected with pathogens produce antibiotics phytoalexin; monocotyledonous plants produce flavonoids and diterpenoids phytoalexins, and dicotylodoneous plant, despite of infected pathogens, produce family-specific phytoalexin such as flavonoids in Leguminosae, indole derivatives in Cruciferae, sesquitepenoids in Solanaceae, coumarins in Umbelliferae, making the plant resistant to specific pathogen. Growth inhibitor or antifeedant substances to insects are terpenoids pyrethrin, azadirachtin, limonin, cedrelanoid, toosendanin and fraxinellone/dictamnine, and terpenoid-alkaloid mixed compounds sesquiterpene pyridine and norditerpenoids, and azepine-, amide-, loline-, stemofoline-, pyrrolizidine-alkaloids and so on. Also plants produces the substances to inhibit other plant growths to secure the regions for plant itself, which is including terpenoids essential oil and sesquiterpene lactone, and additionally, benzoxazinoids, glucosinolate, quassinoid, cyanogenic glycoside, saponin, sorgolennone, juglone and lots of other different of secondary metabolites. Hence, phytoalexin, an antibiotic compound produced by plants infected with pathogens, can be employed for pathogen control. Terpenoids and alkaloids inhibiting insect growth can be utilized for insect control. Allelochemicals, a compound released from a certain plant to hinder the growth of other plants for their survival, can be also used directly as a herbicides for weed control as well. Therefore, the use of the natural secondary metabolites for pest control might be one of the alternatives for environmentally friendly agriculture. However, the natural substances are destroyed easily causing low the pest-control efficacy, and also there is the limitation to producing the substances using plant cell. In the future, effects should be made to try to find the secondary metabolites with good pest-control effect and no harmful to human health. Also the biosynthetic pathways of secondary metabolites have to be elucidated continuously, and the metabolic engineering should be applied to improve transgenics having the resistance to specific pest.