• 제목/요약/키워드: disulfide bond

검색결과 117건 처리시간 0.031초

Identification of duck liver-expressed antimicrobial peptide 2 and characterization of its bactericidal activity

  • Hong, Yeojin;Truong, Anh Duc;Lee, Janggeun;Lee, Kyungbaek;Kim, Geun-Bae;Heo, Kang-Nyeong;Lillehoj, Hyun S.;Hong, Yeong Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권7호
    • /
    • pp.1052-1061
    • /
    • 2019
  • Objective: This study was conducted to identify duck liver-expressed antimicrobial peptide 2 (LEAP-2) and demonstrate its antimicrobial activity against various pathogens. Methods: Tissue samples were collected from 6 to 8-week-old Pekin ducks (Anas platyrhynchos domesticus), total RNA was extracted, and cDNA was synthesized. To confirm the duck LEAP-2 transcript expression levels, quantitative real-time polymerase chain reaction was conducted. Two kinds of peptides (a linear peptide and a disulfide-type peptide) were synthesized to compare the antimicrobial activity. Then, antimicrobial activity assay and fluorescence microscopic analysis were conducted to demonstrate duck LEAP-2 bactericidal activity. Results: The duck LEAP-2 peptide sequence showed high identity with those of other avian species (>85%), as well as more than 55% of identity with mammalian sequences. LEAP-2 mRNA was highly expressed in the liver with duodenum next, and then followed by lung, spleen, bursa and jejunum and was the lowest in the muscle. Both of LEAP-2 peptides efficiently killed bacteria, although the disulfide-type LEAP-2 showed more powerful bactericidal activity. Also, gram-positive bacteria was more susceptible to duck LEAP-2 than gram-negative bacteria. Using microscopy, we confirmed that LEAP-2 peptides could kill bacteria by disrupting the bacterial cell envelope. Conclusion: Duck LEAP-2 showed its antimicrobial activity against both gram-positive and gram-negative bacteria. Disulfide bonds were important for the powerful killing effect by disrupting the bacterial cell envelope. Therefore, duck LEAP-2 can be used for effective antibiotics alternatives.

Construction of a Hexapeptide Library using Phage Display for Bio-panning

  • Cho, Won-Hee;Yoo, Seung-Ku
    • Journal of Microbiology
    • /
    • 제37권2호
    • /
    • pp.97-101
    • /
    • 1999
  • Random hexapeptide library on the surface of filamentous bacteriophage was constructed using the SurfZAP vector. The size of the library was approximately 105. The peptide insert was flanked by two cysteines to constrain the peptide structure with a disulfide bond. This library was screened for the topoisomerase II binding peptide. Dramatic enrichment of the fusion phage over the VCS M13 helper phage was demonstrated by bio-panning affinity selection.

  • PDF

Production of human leptin in Bacillus subtilis

  • 정기준;이상엽
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2000년도 춘계학술발표대회
    • /
    • pp.535-538
    • /
    • 2000
  • Human leptin is a 16 kDa (146 amino acids) protein secreted from adipocytes and influences body weight homeostasis. In this report, active human leptin was successfully produced in the culture medium of Bacillus subtilis. After simple purification steps consisting of ammonium sulfate precipitation and anion-exchange column chromatography, 2.3 mg of leptin with a purity of greater than 95% was obtained from the 0.5 L culture with the recovery yield of 54.9%. The purified leptin showed the correct folding structure with one disulfide bond.

  • PDF

Enhancement of Gene Delivery Using Novel Homodimeric Tat Peptide Formed by Disulfide Bond

  • Lee, Soo-Jin;Yoon, Sung-Hwa;Doh, Kyung-Oh
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권8호
    • /
    • pp.802-807
    • /
    • 2011
  • Cationic liposomes have been actively used as gene delivery vehicle because of their minimal toxicity, but their relatively low efficiency of gene delivery is the major disadvantage of these vectors. Recently, cysteine residue incorporation to HIV-1 Tat peptide increased liposomemediated transfection compared with unmodified Tat peptide. Therefore, we designed a novel modified Tat peptide having a homodimeric (Tat-CTHD, Tat-NTHD) and closed structure (cyclic Tat) simply by using the disulfide bond between cysteines to develop a more efficient and safe nonviral gene delivery system. The mixing of Tat-CTHD and Tat-NTHD with DNA before mixing with lipofectamine increased the transfection efficiency compared with unmodified Tat peptide and lipofectamine only in MCF-7 breast cancer cells and rat vascular smooth muscle cells. However, cyclic Tat did not show any improvement in the transfection efficiency. In the gel retardation assay, Tat-CTHD and Tat-NTHD showed more strong binding with DNA than unmodified Tat and cyclic Tat peptide. This enhancement was only shown when Tat-CTHD and Tat-NTHD were mixed with DNA before mixing with lipofectamine. The effects of Tat- CTHD and Tat-NTHD were also valid in the experiment using DOTAP and DMRIE instead of lipofectamine. We could not find any significant cytotoxicity in the working concentration and more usage of these peptides. In conclusion, we have designed a novel transfection-enhancing peptide by easy homodimerization of Tat peptide, and the simple mix of these novel peptides with DNA increased the gene transfer of cationic lipids more efficiently with no additional cytotoxicity.

N-Tert-butylbenzothiazole-2-sulfenamide의-S-N = 결합에 대한 전기화학적 환원 (Electrochemical Reduction on the -S-N= Bond of N-Tert-butylbenzothiazole-2-sulfenamide)

  • 김해진;정근호;최규원;김일광;임선영
    • 대한화학회지
    • /
    • 제35권6호
    • /
    • pp.673-679
    • /
    • 1991
  • N-Tert-butylbenzothiazole-2-sulfenamide (TBBS;가황촉진제)의 전기화학적 환원을 직류와 시차펄스 폴라로그래피, 순환 전압전류법, 조절전위 전기량법으로 연구하였다. TBBS의 전극환원과정은 단일 환원파(-2.31 volts vs. Ag/0.1M AgN$O_3$)에서 비가역으로 4전자가 이동하는 E-C-E-C 반응기구로 진행되었다. 조절전위 전기분해 결과 sulfenamide(-S-N=)결합이 끊어지고 mercaptobenzothiazole (MBT)과 유리된 황 그리고 benzothiazole disulfide (MBT dimer) 등이 생성물로 얻어졌다. 생성물의 분석결과와 pH변화에 따른 폴라로그램의 해석을 바탕으로 전기화학적 반응기구를 제안하였다.

  • PDF

N-Oxyldiethylenebenzothiazole-2-sulfenamide의 -S-N= 결합에 대한 전기화학적 환원 (Electrochemical Reduction on the -S-N= Bond of N-Oxyldiethylenebenzothiazole-2-sulfenamide)

  • 김해진;정근호;최규원;김일광;임선영
    • 대한화학회지
    • /
    • 제35권6호
    • /
    • pp.680-688
    • /
    • 1991
  • N-Oxyldiethylenebenzothiazole-2-sulfenamide (ODBS;가황산촉진제)의 전기화학적 환원을 직류와 시차펄스 폴라로그래피 순환 전압전류법, 조절전위 전기량법으로 연구하였다. ODBS의 전극환원과정은 단일 환원파(-1.86 volts vs. Ag/0.1 M AgN$O_3$in AN)에서 비가역으로 3전자가 이동하는 E-C-E-C 반응 메카니즘으로 진행되었다. 조절전위 전기분해 결과 SULFENAMIDE(-S-N=) 결합이 끊어지고 mercaptobenzothiazole(MBT)과 benzothiazole disulfide(MBT dimer) 그리고 유리된 sulfur 등이 생성물로 얻어졌따. pH 변화에 따른 폴라로그램의 해석과 생성물 분석의 결과를 바탕으로하여 전기화학적 반응 메카니즘을 제안하였다.

  • PDF

Oxidation-induced conformational change of Hsp33, monitored by NMR

  • Lee, Yoo-Sup;Kim, Ji-Hoon;Seo, Min-Duk;Ryu, Kyoung-Seok;Kim, Eun-Hee;Won, Hyung-Sik
    • 한국자기공명학회논문지
    • /
    • 제19권3호
    • /
    • pp.99-105
    • /
    • 2015
  • Hsp33 is a prokaryotic molecular chaperon that exerts a holdase activity upon response to an oxidative stress at raised temperature. In particular, intramolecular disulfide bond formation between the four conserved cysteines that bind a zinc ion in reduced state is known to be critically associated with the redox sensing. Here we report the backbone NMR assignment results of the half-oxidized Hsp33, where only two of the four cysteines form an intramolecular disulfide bond. Almost all of the resolved peaks could be unambiguously assigned, although the total assignments extent reached just about 50%. Majority of the missing assignments could be attributed to a significant spectral collapse, largely due to the oxidation-induced unfolding of the C-terminal redox-switch domain. These results support two previous suggestions: conformational change in the first oxidation step is localized mainly in the C-terminal zinc-binding domain, and the half-oxidized form would be still inactive. However, some additional regions appeared to be potentially changed from the reduced state, which suggest that the half-oxidized conformation would be an intermediate state that is more labile to heat and/or further oxidation.

Inactive extracellular superoxide dismutase disrupts secretion and function of active extracellular superoxide dismutase

  • Jeon, Byeong-Wook;Kim, Byung-Hak;Lee, Yun-Sang;Kim, Sung-Sub;Yoon, Jong-Bok;Kim, Tae-Yoon
    • BMB Reports
    • /
    • 제44권1호
    • /
    • pp.40-45
    • /
    • 2011
  • Extracellular superoxide dismutase (EC-SOD) is an antioxidant enzyme that protects cells and tissues from extracellular damage by eliminating superoxide anion radicals produced during metabolism. Two different forms of EC-SOD exist, and their different enzyme activities are a result of different disulfide bond patterns. Although only two folding variants have been discovered so far, five folding variants are theoretically possible. Therefore, we constructed five different mutant EC-SOD expression vectors by substituting cysteine residues with serine residues and evaluated their expression levels and enzyme activities. The mutant EC-SODs were expressed at lower levels than that of wild-type EC-SOD, and all of the mutants exhibited inhibited extracellular secretion, except for C195S ECSOD. Finally, we demonstrated that co-expression of wild-type EC-SOD and any one of the mutant EC-SODs resulted in reduced secretion of wild-type EC-SOD. We speculate that mutant EC-SOD causes malfunctions in systems such as antioxidant systems and sensitizes tissues to ROS-mediated diseases.

Design of a RANK-Mimetic Peptide Inhibitor of Osteoclastogenesis with Enhanced RANKL-Binding Affinity

  • Hur, Jeonghwan;Ghosh, Ambarnil;Kim, Kabsun;Ta, Hai Minh;Kim, Hyunju;Kim, Nacksung;Hwang, Hye-Yeon;Kim, Kyeong Kyu
    • Molecules and Cells
    • /
    • 제39권4호
    • /
    • pp.316-321
    • /
    • 2016
  • The receptor activator of nuclear factor ${\kappa}B$ (RANK) and its ligand RANKL are key regulators of osteoclastogenesis and well-recognized targets in developing treatments for bone disorders associated with excessive bone resorption, such as osteoporosis. Our previous work on the structure of the RANK-RANKL complex revealed that Loop3 of RANK, specifically the non-canonical disulfide bond at the tip, performs a crucial role in specific recognition of RANKL. It also demonstrated that peptide mimics of Loop3 were capable of interfering with the function of RANKL in osteoclastogenesis. Here, we reported the structure-based design of a smaller peptide with enhanced inhibitory efficiency. The kinetic analysis and osteoclast differentiation assay showed that in addition to the sharp turn induced by the disulfide bond, two consecutive arginine residues were also important for binding to RANKL and inhibiting osteoclastogenesis. Docking and molecular dynamics simulations proposed the binding mode of the peptide to the RANKL trimer, showing that the arginine residues provide electrostatic interactions with RANKL and contribute to stabilizing the complex. These findings provided useful information for the rational design of therapeutics for bone diseases associated with RANK/RANKL function.

Synechoscoccus sp. cyanophage 구조단백질의 특성 (Characteristics of Structural Proteins of Synechococcus sp. Cyanophage)

  • 김승원;김민;임미혜;최영길
    • 미생물학회지
    • /
    • 제33권4호
    • /
    • pp.242-246
    • /
    • 1997
  • Synechococcus sp. cyanophage의 SDS-PAGE 수행 결과 구조단백질은 두 개의 major protein(97 kDa, 52 kDa)과 최소 일곱 개의 minor protein(70 kDa, 65 kDa, 60 kDa, 40 kDa, 35 kDa, 28 kDa, 6 kDa)으로 구성되어 있는 것으로 나타났다. Subunit들은 서로 disulfide bond로 연결되어 있지는 않지만 비공유적 결합으로 multimer를 형성하여 phage particle을 구성하고 있는 것으로 보인다. 또한 heat-killed Micrococcus luteus cell을 기질로 이용한 renaturing SDS-PAGE 방법으로 phage particle내의 세포벽 분해능을 살표본 결과 52 kDa 부근에서 세포벽 분해활성이 발견되었다. 이러한 세포벽 분해활성은 최적 pH가 9~10 사이이며 EDTA에 대한 낮은 저해를 나타내었다.

  • PDF