• 제목/요약/키워드: disturbance model

검색결과 1,122건 처리시간 0.03초

Simulation study on porosity disturbance of ultra-large-diameter jet borehole excavation based on water jet coal wetting and softening model

  • Guo, Yan L.;Liu, Hai B.;Chen, Jian;Guo, Li W.;Li, Hao M.
    • Geomechanics and Engineering
    • /
    • 제30권2호
    • /
    • pp.153-167
    • /
    • 2022
  • This study proposes a method to analyze the distribution of coal porosity disturbances after the excavation of ultra-large-diameter water jet boreholes using a coal wetting and softening model. The high-pressure jet is regarded as a short-term high-pressure water injection process. The water injection range is the coal softening range. The time when the reference point of the borehole wall is shocked by the high-pressure water column is equivalent to the time of high-pressure water injection of the coal wall. The influence of roadway excavation with support and borehole diameter on the ultra-large-diameter jet drilling excavation is also studied. The coal core around the borehole is used to measure the gas permeability for determining the porosity disturbance distribution of the coal in the sampling plane to verify the correctness of the simulation results. Results show that the excavation borehole is beneficial to the expansion of the roadway excavation disturbance, and the expansion distance of the roadway excavation disturbance has a quadratic relationship with the borehole diameter. Wetting and softening of the coal around the borehole wall will promote the uniform distribution of the overall porosity disturbance and reduce the amplitude of disturbance fluctuations.

두 개의 루프를 갖는 일반화된 모델 기반의 외란 제거 제어기 설계 (Design of Generalized Model-based Disturbance Rejection Controller with Two Loops)

  • 최현택;김봉근;엄광식
    • 제어로봇시스템학회논문지
    • /
    • 제10권5호
    • /
    • pp.385-394
    • /
    • 2004
  • This paper proposes the generalized structure of a model-based disturbance rejection controller called a Robust Internal-loop Compensator (RIC). The framework consists of the RIC in the internal-loop to eliminate disturbances and a feedback controller in the external-loop to achieve nominal control performance. As the main contribution of this paper, we redefine the design problem of the RIC as a regulation control problem, then show that this new definition with the RIC structure provides more design flexibility and less implementation constraints. This is verified through a comparative structural analysis with Disturbance Observer (DOB) and Adaptive Robust Control (ARC). Two design examples of the RIC are given, along with practical issues that should be considered in the design procedure. The proposed framework is demonstrated by simulations of a rotary-type motor and experiments with a linear-type motor system.

입력 외란이 존재하는 비동기 순차 머신의 교정 제어 I : 모델링 (Corrective Control of Asynchronous Sequential Machines with Input Disturbance I : Modeling)

  • 양정민
    • 전기학회논문지
    • /
    • 제56권9호
    • /
    • pp.1655-1664
    • /
    • 2007
  • This paper presents the problem of controlling asynchronous sequential machines in the presence of input disturbances, which may be also regarded as an adversary in a game theoretic setting. The main objective is to develope a new methodology for including unpredictable behavior of input disturbance into models of asynchronous machines. The input disturbance, representing uncontrollable noise input, is embedded into a new model of asynchronous machines in form of input/state finite state machines. It is shown that the proposed modeling preserves the fundamental model and well-pose of asynchronous machines. The reachability matrix, an important performance index of asynchronous machines, is also adapted according to input disturbance and will be used for constructing corrective controllers in the companion paper.

모델 불확실성을 갖는 이차 오실레이터에 대한 근사화된 최대 시간 교란 신호 설계 (Near Time Maximum Disturbance Design for Second Order Oscillator with Model Uncertainty)

  • 유관호
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권4호
    • /
    • pp.205-211
    • /
    • 2003
  • In this paper we propose a disturbance design method to test a system's stability. It is shown that the time maximum disturbance is represented in bang-bang and state feedback form. To maximize the time severity index, the value of disturbance is determined by the associated switch curve. The original switch curve is vulnerable to model uncertainties and takes much calculation time. We propose an improved method to approximate the original switch curve. This reduces the computational time and implements sufficiently to test the stable system. Simulation results show how the approximate switch curve can be used to stress a system by driving it to oscillation along the maximum limit cycle.

외란관측기를 이용한 자기부상시스템의 제어기 설계에 관한 연구 (A Study on the Controller Design for EMS System using Disturbance Observer)

  • 강남숙;조남훈
    • 전기학회논문지
    • /
    • 제62권9호
    • /
    • pp.1264-1269
    • /
    • 2013
  • In this paper, we study a disturbance observer (DOB) based controller for an EMS(Electro-Magnetic Suspension) system in presence of mass uncertainty and input disturbance. The DOB based controller is employed in order to compensate the modeling uncertainty and attenuate disturbance signals. For the design of DOB based controller, the Jacobain linearization of nonlinear system model equation is used. Computer simulation is carried out for nonlinear model in order to compare the performance of the proposed DOB controller with that of the conventional PID controller. The simulation results show that the substantial improvement in the performance can be achieved by the proposed DOB controller.

Disturbance-Observer-Based Robust H Switching Tracking Control for Near Space Interceptor

  • Guo, Chao;Liang, Xiao-Geng
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제15권2호
    • /
    • pp.153-162
    • /
    • 2014
  • A novel robust $H_{\infty}$ switching tracking control design method with disturbance observer is proposed for the near space interceptor (NSI) with aerodynamic fins and reaction jets. Initially, the flight envelop of the NSI is divided into small subregions, and a slow-fast loop polytopic linear parameter varying (LPV) model is proposed, to approximate the nonlinear dynamic of the NSI, based on the Jacobian linearization and Tensor-Product (T-P) model transformation approach. A disturbance observer is then constructed, to estimate the modeled disturbance. Subsequently, based on the descriptor system method, a robust switching controller is developed, to ensure that the closed-loop descriptor system is stable with a desired $H_{\infty}$ disturbance attenuation level. Furthermore, the outcome of the proposed switching tracking control problem is formulated as a set of linear matrix inequalities (LMIs). Finally, simulation results demonstrate the effectiveness of the proposed design method.

내부 모델 기반 외란 관측기를 이용한 수직 1축 머니퓰레이터의 속도 제어기 설계 (Design of a Speed Controller for Vertical One-Link Manipulator Using Internal Model-based Disturbance Observer)

  • 이초원;김인혁;손영익
    • 전기학회논문지
    • /
    • 제64권5호
    • /
    • pp.751-754
    • /
    • 2015
  • This paper deals with a robust speed control problem of a vertical one-link manipulator in the presence of parameter uncertainties and unknown input disturbance. Uncertain load weight causes an additional sinusoidal disturbance in the rotation of the link. In order to improve the robustness against parameter uncertainties and external input disturbances, this paper employs an internal model-based disturbance observer approach. Comparative computer simulations are performed to test the performance of the proposed controller. The simulation results show the enhanced performance of the proposed method.

외란과 모델 불확실성에 강인한 DC모터의 속도 제어용 H-infinity 제어기 설계 (H-infinity controller design for robust speed control against disturbance and model uncertainty of DC motors)

  • 정태영;김동근
    • 수산해양기술연구
    • /
    • 제58권3호
    • /
    • pp.241-250
    • /
    • 2022
  • This paper describes the design of H-infinity controller for robust control of a DC motor system. The suggested controller can ensure robustness against disturbance and model uncertainty by minimizing H-infinity norm of the transfer function from exogenous input to performance output and applying the small gain theorem. In particular, the controller was designed to reduce the effects of disturbance and model uncertainty simultaneously by formalizing these problems as a mixed sensitivity problem. The validity of the proposed controller was demonstrated by computer simulations and real experiments. Moreover, the effectiveness of the proposed controller was confirmed by comparing its performance with PI controller, which was tested under the same experimental condition as the H-infinity controller.

시변 자기 환경에 강한 자기왜곡 모델 내장형 헤딩 추정 필터 (Magnetic Disturbance Model-Embedded Heading Estimation Filter for Time-Varying Magnetic Environments)

  • 이정근;최미진
    • 센서학회지
    • /
    • 제26권4호
    • /
    • pp.286-291
    • /
    • 2017
  • With regards to heading estimation using gyroscope and magnetometer signals, magnetic disturbance added in the magnetometer signals is a main degradation factor in the estimation accuracy. Although there are a number of existing mechanisms that may properly compensate for the magnetic disturbances, they are designed to react only to the magnetic disturbances, but not to the time derivative of disturbances. Note that the sensors may experience abrupt changes in the magnetic disturbances, particularly for ambulatory applications. This paper proposes a magnetic disturbance model-embedded heading estimation filter for time-varying magnetic environments. The proposed magnetic disturbance model is based on a first-order Markov chain with a conditional switching technique depending on the time derivative of disturbances. Once a high amount of derivative is detected, the corrupted magnetometer signals are discarded to protect the filter from them. In our experimental results, the averaged heading error of tests was $1.46^{\circ}$, while that of the original approach without switching was $5.75^{\circ}$.

외란 관측기를 이용한 모델 예견 기반의 전지형 크레인 자동조향 제어알고리즘 개발 (Development of an Automatic Steering-Control Algorithm based on the MPC with a Disturbance Observer for All-Terrain Cranes)

  • 오광석;서자호
    • 드라이브 ㆍ 컨트롤
    • /
    • 제14권2호
    • /
    • pp.9-15
    • /
    • 2017
  • The steering systems of all-terrain cranes have been developed with various control strategies for the stability and drivability. To optimally control the input steering angle, an accurate mathematical model that represents the actual crane dynamics is required. The derivation of an accurate mathematical model to optimally control the steering angle, however, is difficult since the steering-control strategy generally varies with the magnitude of the crane's longitudinal velocity, and the postures of the crane's working parts vary while it is being driven. To address this problem, this paper proposes an automatic steering-control algorithm that is based on the MPC (model predictive control) with a disturbance observer for all-terrain cranes. The designed disturbance observer of this study was used to estimate the error between the base steering model and the actual crane. A model predictive controller was used for the computation of the optimal steering angle, along with the use of the base steering model with an estimated uncertainty. Performance evaluations of the designed control algorithms were conducted based on a curved-path scenario in the Matlab/Simulink environment. The performance-evaluation results show a sound reference-path-tracking performance despite the large uncertainties.