• Title/Summary/Keyword: distribution pipe

Search Result 623, Processing Time 0.031 seconds

Response of Millet and Sorghum to Water Stress in Converted Poorly Drained Paddy Soil

  • Jung, Ki-Yuol;Yun, Eul-Soo;Park, Chang-Young;Hwang, Jae-Bok;Choi, Young-Dae;Oh, In-Seok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.409-416
    • /
    • 2013
  • Millet and sorghum are major dryland cereal crops, however their growth and productivity is limited by soil water stress with varying intensity. The major objective of this study was to evaluate water stress of millet and sorghum yield under drainage classes of poorly drained soil and to test the effect of the installed pipe drainage in poorly drained paddy soil to minimize crop stress. The research was carried out in poorly drained paddy fields located at alluvial slopping area resulting in non-uniform water content distribution by the inflow of ground water from the upper part of the field. Stress Day Index (SDI) was determined from a stress day factor (SD) and a crop susceptibility factor (CS). SD is a degree of measurement by calculating the daily sum of excess water in the profile above 30cm soil depth ($SEW_{30}$). CS depends on a given excess water on crop stage. The results showed that sum of excess water day ($SWD_{30}$) used to represent the moisture stress index was lower on somewhat poorly drained soil compared with poorly drained soil on 117 days. CS values for sorghum were 57% on $3^{rd}$ leaf stage, 44% on $5^{th}$ leaf stage, 37% on panicle initiation, 23% on boot stage, and 16% on soft dough stage. For proso millet CS values were 84% on $3^{rd}$ leaf stage, 70% on $5^{th}$ leaf Stage, 65% on panicle initiation, 53% on boot stage, and 28% on soft dough stage. And for foxtail millet the values were 73% on $3^{rd}$ leaf stage, 61% on $5^{th}$ leaf stage, 50% on panicle initiation, 29% on boot stage, and 15% on soft dough stage. SDI of sorghum and millet was more susceptible to excess soil water during panicle initation stage more poorly drained soil than somewhat poorly drained soil. Grain yield was reduced especially in proso millet and Foxtail millet compared to Sorghum.

A Study on 8-Stage Loading Method of the Scaffolding Module for LNG Carriers (LNG 운반선 비계 모듈의 8단 탑재 방안 연구)

  • Shin, Sang-Hoon;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.78-85
    • /
    • 2020
  • The scaffolding system, which is a construction workbench of the cargo containment for a membrane LNG carrier, is a large truss structure composed of various members. To shorten the installation period and process of the scaffolding system, it is effective to enlarge the mounting unit from the existing two stages to eight stages. Owing to the increase in lifting load according to the large size of the module, the stresses around the pin and hole will be increased significantly. In this study, a tensile strength test and contact stress analysis were performed to confirm the structural safety. The relatively large hole deformation was observed visually near the average load generated in the vertical pipe at the top through tensile strength tests. A contact stress calculation confirmed the stress distribution around the hole. The contact problem was dealt with in terms of the Herzian contact stress. The possibility of 8-stage loading was examined by comparing the yield strength and contact stresses of failure critical locations. As a result, the 8-stage loading method of the existing scaffolding material was inadequate, and a new loading method with proper safety is proposed.

Thermal Conductivity Effect of Heat Storage Layer using Porous Feldspar Powder (다공질 장석으로 제조한 축열층의 열전도 특성)

  • Kim, Sung-Wook;Go, Daehong;Choi, Eun-Kyeong;Kim, Sung-Hwan;Kim, Tae-Hyoung;Lee, Kyu-Hwan;Cho, Jinwoo
    • Economic and Environmental Geology
    • /
    • v.50 no.2
    • /
    • pp.159-170
    • /
    • 2017
  • The temporal and spatial temperature distribution of the heat storage mortar made of porous feldspar was measured and the thermal properties and electricity consumption were analyzed. For the experiment, two real size chambers (control model and test model) with hot water pipes were constructed. Two large scale models with hot water pipes were constructed. The surface temperature change of the heat storage layer was remotely monitored during the heating and cooling process using infrared thermal imaging camera and temperature sensor. The temperature increased from $20^{\circ}C$ to $30^{\circ}C$ under the heating condition. The temperature of the heat storage layer of the test model was $2.0-3.5^{\circ}C$ higher than the control model and the time to reach the target temperature was shortened. As the distance from the hot water pipe increased, the temperature gap increased from $4.0^{\circ}C$ to $4.8^{\circ}C$. The power consumed until the surface temperature of the heat storage layer reached $30^{\circ}C$ was 2.2 times that of the control model. From the heating experiment, the stepwise temperature and electricity consumption were calculated, and the electricity consumption of the heat storage layer of the test model was reduced by 66%. In the cooling experiment, the surface temperature of the heat storage layer of the test model was maintained $2^{\circ}C$ higher than that of the control model. The heat storage effect of the porous feldspar mortar was confirmed by the temperature experiment. With considering that the time to reheat the heat storage layer is extended, the energy efficiency will be increased.

Corrosion and Oxidation Properties of Ni-Base Superalloy KM 1557 (Ni기 초내열 단조합금 KM 1557의 부식 및 산화성질)

  • Choi, Hyoung Il;Kim, Hyon Tae;Kim, Young Do;Yoon, Kook Han;Yoo, Myoung Ki;Kwun, Sook In;Choi, Ju
    • Analytical Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.143-152
    • /
    • 1992
  • Corrosion resistances in various acids and high temperature oxidation properties have been investigated for the Ni-base superalloy KM 1557. Corrosion tests were performed in $H_2SO_4$, HCl, $HNO_3$, $H_3PO_4$ and $CH_3COOH$. Oxidation tests were carried out in air for 20 and 110hrs at $900^{\circ}C$, $950^{\circ}C$ and $1050^{\circ}C$. Hot corrosion tests were done in salt bath of 75% $Na_2SO_4-25%$ NaCl at $900^{\circ}C$ for 20hrs. After the tests, the samples were observed by optical microscopy and analysed by EPMA and X-ray mapping in order to investigate the distribution of composition. It was shown that corrosion resistances in various acids and hot salt bath were proven to be excellent. It was suggested that the amounts of oxides were determined mainly by the depth of internal and intergranular $Al_2O_3$ oxide layers.

  • PDF

Hydrodynamic Characteristics of Self-expandable Graft Stents in Steady Flow (정상유동에서 자가팽창성 그래프트 스텐트의 수력학적 특성)

  • 이홍철;김철생;박복춘;박복춘
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.37-44
    • /
    • 2003
  • This experimental study is aimed at evaluating the hydrodynamic performance of newly designed self-expandable graft stents under steady flow condition. Two graft stents with different coating materials and a bare TiNi metallic stent for comparison test were used in the experiment. Pressure variation and velocity distribution at the upstream and downstream of the stents were measured at flow rates of 5, 10, and 15 l/min, respectively. Pressure loss due to insertion of the stent increased with increasing flow rate exponentially as expected. At a flow rate of 15 l/min, pressure loss of Polyure-thane(PU)-coated graft stent was 6 times higher than that of TiNi metallic stent, while the pressure loss of a porous Polytetrafluoroethylene(PTFE)-coated graft stent was comparable to a bare TiNi metallic stent. Velocity profiles of the porous PTFE-coated graft stent were similar to those of a bare TiNi metallic stent regardless of flow rate. Furthermore, the velocity profile of PU-coated graft stent revealed an asymmetrical and relatively low central velocity at a higher flow rate than 10 1/min, expecially, where the effects resulted in increases of wall shear stress and normal stress. The worse hydrodynamic behavior of PU-coated graft stent than the other two stents might be attributed to formation of folds due to poor flexibility of coated material when inserting the graft stent into the pipe with a more smaller size, which later gave rise non-symmetry of flow area, increase of surface roughness and jet flow via the crevice between the stent and cylinder wall.

Study on the Optimal Construction Method for the Compaction Method of Hydraulic Filling in Metropolitan Areas (도심지 물다짐 공법의 적정 시공방법에 관한 연구)

  • Jeong, Dal-Yeong;Jang, Jong-Hwan;Chung, Jin-Hyuck
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.175-181
    • /
    • 2020
  • This paper suggests a proper hydraulic filling method in downtown areas. Road subsidence on roadways and sidewalks in downtown areas can result in vehicle damage and casualties. The representative cause of road subsidence is the fraudulent construction in nearby construction sites. A deficiency of excavation restoration causes approximately 25~49% of subsidence. This is performed by equipment or manpower. Hydraulic filling is used in backfilling narrow pipe conduits and spaces between structures. On the other hand, standard specifications and quality assurance standards regarding hydraulic filling principles and construction conditions are insufficient. Therefore, in-door model experiments on hydraulic filling principles, backfilling material, and compaction efficiency were performed. This paper suggests guidelines by investigating and analyzing construction status. In conclusion, thrown backfilling material has a particle size distribution and permeability coefficient as major factors, and detailed standards of the factors are suggested. To improve the compaction efficiency, 90% or more, compaction by the floor should be in units of 0.3m while ensuring a lower drainage layer. When an H-shape stabilizing pile is pulled out after filling, additional hydraulic filling should be in the disturbance range.

Geotechnical investigation on causes and mitigation of ground subsidence during underground structure construction (터널 및 지중매설물 시공에 따른 지반함몰 발생 원인 및 대책에 대한 지반공학적 조사 연구)

  • Choi, Shin-Kyu;Back, Seung-Hun;An, Jun-Beom;Kwon, Tae-Hyuk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.2
    • /
    • pp.143-154
    • /
    • 2016
  • This study investigated the occurrences, causes, and mitigation of the recent ground subsidence and underground cavity generation events in Korea. Two main causes of ground subsidence are (1) the soil erosion by seepage during tunneling and earth excavation and (2) the damage of underground pipes. The main cause of the soil erosion during tunneling was the uncontrolled groundwater flow. Especially, when excavating soft grounds using a tunnel boring machine (TBM), the ground near TBM operation halt points were found to be the most vulnerable to failure. The damage of underground pipes was mainly caused by poor construction, material deterioration, and differential settlement in soft soils. The ground subsidence during tunneling and earth excavation can be managed by monitoring the outflow of groundwater and eroded soils in construction sites. It is expected that the ground subsidence by the underground pipe damage can be managed or mitigated by life cycle analysis and maintenance of the buried pipes, and by controlling the earth pressure distribution or increasing the bearing capacity at the upper ground of the buried pipes.

The Development and its Application of Diagnostic Technique for Corrosion Defect of U-type Open Rack Vaporizer (개방형 U-type 기화기의 부식손상부 진단기법 개발 및 적용)

  • Jang S. Y.;Lee S. M.;Oh B. T.;Kho Y. T.
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.3 s.15
    • /
    • pp.45-50
    • /
    • 2001
  • Open rack vaporizer (ORV) has been used in liquefied natural gas (LNG) receiving terminal in order to vaporize LNG into natural gas (NG) by heat exchange with seawater The U-type ORV which had been operated with seawater for 14 years is one of the important utilities of the gas production and the weld part of tube connected with header_ pipe had experienced many corrosion problems. To elucidate the cause of corrosion at weld part of vaporizer tube, corrosion potentials were compared by parts. This study concerns on the measurement of corrosion pit depth using non-destructive method and the evaluation of stress distribution in an aspect of safety with finite element analysis. In order to confirm the reliability of galvanic corrosion between weld parts and base metal, the measurement of corrosion potential by parts was conducted for 20 minutes in 3.5$\%$(wt.) NaCl solution. Many non-destructive methods were tried to measure the remaining thickness of vaporizer tube at fields. For general corrosion, tangential radiography test was confirmed as an effective method. In case of a fine corrosion pit, the shape of corrosion pit was reproduced using surface replication method. From collected data, stress distributions were quantitatively evaluated with 2-dimensional finite element method and the diagnostic evaluation on internal pressure of the U-type vaporizer could be made.

  • PDF

Roof Ventilation Structures and Ridge Vent Effect for Single Span Greenhouses of Arch Shape (아치형 단동온실의 지붕환기구조 및 천창효과)

  • Nam, Sang-Woon
    • Korean Journal of Agricultural Science
    • /
    • v.28 no.2
    • /
    • pp.99-107
    • /
    • 2001
  • It is difficult to install a ventilation window on the roof of single span greenhouses of arch shape. Investigation on the roof ventilation structures for those greenhouses was conducted. In small greenhouses with spans of 5 to 8 m, circular or chimney type ridge vents made of plastic were employed. In large greenhouses with spans of 12 to 18 m, even span roll-up ridge vents made of steel pipe were employed. The effect of roof ventilation was evaluated by comparative experiments between greenhouse installing ridge vents and having controlled side vents only. Roof ventilation contributed greatly to restraint of temperature rise and maintenance of uniform temperature distribution in greenhouses. And ventilation efficiency was analyzed by experiments on the opening and closing operation of the ridge and side vent. There were no temperature differences according to opening and closing sequence of ventilation window. But for greenhouse temperature control by ventilation, it is desirable to open side vents after ridge vents and to close ridge vents after side vents.

  • PDF

Predictive Exploration of the Cretaceous Major Mineral Deposits in Korea : Focusing on W-Mo Mineralization (한국 백악기 주요 금속광상의 예측 탐사 : W-Mo 광화작용을 중심으로)

  • Choi, Seon-Gyu;Kang, Jeonggeuk;Lee, Jong Hyun
    • Economic and Environmental Geology
    • /
    • v.52 no.5
    • /
    • pp.323-336
    • /
    • 2019
  • The Mesozoic activity on the Korean Peninsula is mainly represented by the Triassic post-collisional, Jurassic orogenic, and Cretaceous post-orogenic igneous activities. The diversity of mineralization by each geological period came from various geothermal systems derived from the geochemical characteristics of magma with different emplacement depth. The Cretaceous metallic mineralization has been carried out over a wide range of time periods from ca. 115 to 45 Ma (main stage; ca. 100 to 60 Ma) related to post-orogenic igneous activity, and spatial distribution patterns of most metal deposits are concentrated along small granitic stocks. The late Cretaceous metal deposits in the Gyeonggi and Yeongnam massifs are generally distributed along the boundary among the Gongju-Eumseong fault system and the Yeongdong-Gwangju fault system and the Gyeongsang Basin, most of them are in the form of a distal epithermal~mesothermal Au-Ag vein or a transitional mesothermal Zn-Pb-Cu vein. On the other hand, diverse metal commodities in the Taebaeg Basin, the Okcheon metamorphic belt and the Gyeongsang Basin are produced from various deposit types such as skarn, carbonate-replacement, vein, porphyry, breccia pipe, and Carlin type. In the late Cretaceous metallic mineralization, various mineral deposits and commodities were induced not only by the pathway of the hydrothermal solution, but also by the diversity of precipitation environment in the proximity difference of the granitic rocks. The diversity of these types of Cretaceous deposits is fundamentally dependent on the geochemical characteristics such as degree of differentiation and oxidation state of related igneous rocks, and ore-forming fluids generally exhibit the evolutionary characteristics of intermediate- to low-sulfur hydrothermal fluids.